INDUCED HYPOTHERMIA

F. Ben Housel, M.D.

Historical Use of Induced Hypothermia

- 1950's Moderate hypothermia (30°-32° C) in open heart surgery to protect brain against global ischemia
- 1960 1980's Use of moderate hypothermia after CVA's and head injuries resulted in uncertain benefit and high complication rate
- 1990's Lab studies showed benefits of mild hypothermia (32° 34° C) for 12-24 hours without high complication rate

Two randomized prospective trials:

Mild Therapeutic Hypothermia To Improve the Neurologic Outcome After Cardiac Arrest (N Engl J Med 2002)

Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest With Induced Hypothermia (N Engl J Med 2002)

Three End Points Evaluated:

• Favorable neurological outcome at six months (able to live independently and work at least part time)

Overall mortality at six months

• Significant difference in complication rate

Patients Receiving Induced Hypothermia:

• 16% higher favorable neurological status

• 14% lower mortality rate

No significant difference in complication rate

2005 AHA Post Resuscitation Guidelines:

Unconscious adult patients with return of spontaneous circulation after out-of-hospital cardiac arrest should be cooled to 32° - 34°C for 12 to 24 hours when the initial rhythm was ventricular fibrillation. (IIA)

Such cooling may also be beneficial for other rhythms or in-hospital cardiac arrest. (IIB)

Beneficial effects of mild hypothermia after cardiac arrest:

• Reduction in cerebral O² consumption

Suppression of free radical reactions

Reduction of intracellular acidosis

• Inhibition of destructive enzymatic reactions caused by reperfusion

Other physiological effects of mild hypothermia:

- Vasoconstriction (cold diuresis, mottled appearing skin)
- Decreased insulin production
- Potassium levels decrease (shifts into muscle cells)
- Decreased CO² production
- Bradycardia

Methods for achieving mild hypothermia:

• Ice packs to head/neck/groin – 0.9°C/hr

• Chilled saline infusion at 4°C – 1.7°C/hr

• Cooling blanket – 0.3°C/hr

Core temperature measurement during mild hypothermia:

- Tympanic temp not accurate during hypothermia but use to make an initial temperature reading in the field before beginning induced hypothermia (as a baseline).
- Bladder probe and esophageal probe more reliable method for determining core temp during hypothermia

Inclusion criteria for induced hypothermia:

- Adults 18 years of age or older
- Negative pregnancy test for women <50 y.o.
- Post cardiac arrest with ROSC < 90 minutes
- Hypothermia begun within 6 hrs of ROSC
- Comatose, GCS < 6
- Hemodynamically stable with SBP >90

Absolute contraindications:

• DNR or terminal illness

 Cardiac arrest from trauma, head injury, stroke, or sepsis

Active bleeding or severe coagulopathy

Refractory hypotension SBP <90 despite inotropic support

Relative contraindications:

- Conflict with advance directives
- Major surgery within 14 days
- Cardiac arrest 2° to or associated with drug OD
- Uncontrollable arrhythmia
- Age 75 or older

Pre-hospital phase:

 Medics will use inclusion/exclusion criteria to identify possible candidates with guidance by Base Station

• Medics will notify Base Station they are initiating induced hypothermia

 Medics will begin cooling using chemical ice packs to head, neck, groin

PRIORITY IS ALWAYS MANAGING THE PATIENT'S AIRWAY, BREATHING, AND CIRCULATION FIRST

Emergency Department:

- ER Physician will make final inclusion decision
- Infusion of 4°C NaCl at 250 ml/hr or more begun in ER
- Cooling blankets started in ER
- Sedation, analgesia started in ER
- Paralytics started if necessary to prevent shivering

ICU

 Target temp of 33°C within 6 hours of beginning induced hypothermia

• Begin rewarming patient 24 hours after hypothermia induced

• Possible transfer to interventional cath lab

ANY QUESTIONS?

