<u>Appendix A</u>

CTC PREFERRED DESIGN APPROACH

Excerpt from California Tahoe Conservancy Soil Erosion Control Grants Program – Program Announcement and Guidelines, July 2002

D. <u>Preferred Design Approach</u>

This section presents an overall strategy to consider when designing projects. It is intended to apply not only to grant application preparation, but also to the more detailed design work that occurs after a grant is awarded.

The preferred design approach is a refinement of previous erosion control program guidelines, and reflects the current assessment of state-of-the-art technology and experience in implementing erosion control project at Lake Tahoe. The preferred design approach emphasizes project elements that prevent the mobilization of fine sediment and nutrients by erosion (source control), and that reduce the volume of runoff reaching natural surface waters (hydrologic design considerations). Source control measures and hydrologic design considerations, primarily infiltration, are the most cost-effective and efficient means to improve water quality. Water quality treatment measures to remove pollutants from runoff are to be considered after application of the other two groups of design considerations (source control and hydrologic design).

In cases where applicants find it difficult to apply a specific portion of the preferred design approach to a project or element of a project, the applicant should consult with Conservancy staff on specific barriers to implementation of the preferred design approach before submitting site improvement applications. If project designs are not based on this approach, grantees will be required to explain the specific barriers to the application of the preferred design approach and provide documentation to support how the proposed alternative approach meets program objectives (e.g., maximizes water quality benefit).

The Conservancy recognizes that this approach must be applied within the context of professional engineering practices to avoid impacts on public health and safety and damage to public and private property. It also recognizes that there are legal and regulatory limitations to the application of these principles, such as applicable drainage law.

Specific elements of the preferred design approach are:

Source Control

- 1. Place higher priority on source controls than on treatment. Source controls are measures that prevent erosion. Treatment facilities remove pollutants from runoff.
- 2. Emphasize reduction in bare, erodible surfaces (e.g., steep cut slopes, dirt roads) and impervious area.
- 3. Emphasize stabilization of gullies, unstable channels, and other sources that contribute especially high sediment loads.
- 4. Maximize self-sustaining source control methods, such as revegetation with native plants, pine needle mulching, and adding soil amendments such as mycorrhizal inoculum to soils when appropriate.

Hydrologic Design

- 5. Maintain or create distributed flow patterns (e.g., flows which discharge from the right-of-way frequently, or from shoulders by unconcentrated "sheet flow") and avoid concentration of flows where feasible.
- 6. Maximize infiltration of runoff from impervious surfaces. In some cases this can be accomplished by techniques described in number 5 above or also by the construction of leach fields, dry wells, or detention basins, for example.
- 7. Keep runoff from non-urban areas separate from urban runoff until urban runoff is treated. Treatment efficiency is much greater when flow volumes are smaller.
- 8. Keep treated urban runoff separate from untreated urban runoff to avoid resuspension of sediments and decreased treatment efficiency in downstream facilities.
- 9. Apply geomorphologic principles to natural channel design and mimic natural processes when stabilizing, restoring, or recreating natural drainage channels. For example, channels with floodplains tend to be more stable than those without. Channels with steps and pools are a frequent natural stream form and have better habitat values than those with continuous slopes. Avoid adding to or decreasing natural stream flows or changing watershed boundaries.

Treatment

- 10. Emphasize removal of fine sediments and phosphorous. For the purposes of the program guidelines, fine sediment is considered to be those particles that pass the number 200 sieve (less than 75 microns). Examples of improvements that are likely to achieve this objective are properly-sized, flat or gently-sloping, well-vegetated, detention areas (meadow-like areas).
- 11. Use natural treatment systems, such as meadows, where feasible. Because of the critical importance of wetland plants in removing pollutants from runoff, projects located in Stream Environment Zones (SEZ) should generally preserve the existing vegetation and function of the SEZs to the maximum extent practicable.

These guidelines continue to place a priority on SEZ restoration work. Such restoration work is cost-effective and beneficial for removing nutrients and fine sediment from runoff. The Environmental Improvement Program (EIP) calls for 40 acres of SEZ restoration over the 10-year EIP period in each of the primary grantee jurisdictions. In addition, the 208 Plan calls for the restoration of 1,100 acres of disturbed SEZs in the Basin. As in past years' programs, preference will be given to qualified projects that provide for infiltration of runoff and absorption of nutrients by plants and soil. This concept will continue to be promoted in the plan review process.

<u>Appendix B</u>

HYDROLOGY AND HYDRAULICS

RATIONAL METHOD RESULTS (Existing Conditions)

Velocity

Travel Time

(min)

0.18

NOTES	2.035	= P ₂ (2 yr, 24	hr rainfall depth based	on 25 inches	mean ann	ual precip)			y=bx^m			_						
	6.0	Initial Time of	f Concentration for all	areas						b	m							
	0.90	Time of Conc	entration based on Co	unty of El Do	rado Draina	age Manual (Chapter 2)		10 yrs	5.3289	-0.506							
	0.10	Time of Conc	entration determined u	using Longes	t Travel Pat	h in Watersl	hed		25 yrs	6.2363	-0.505							
	c value a d	composite of p	ervious and imperviou	is areas					100 yrs	7.5448	-0.506							
		**100 Year St	orm Assumes 25% inc	rease in C														
DATA RUN		= Computed	Automatically															
		=Determined	from Appendix 4.2 of (County of EI	Dorado Drai	inage Manua	al											
		=Determined	from Previous Worksh	eets														
WS A	0%	=Bulking'																
SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocit (ft/s)
1-2	7.47	15.35%	10 Year	10.51	0.22	1.62	2.7											
			25 Year	10.51	0.22	1.90	3.2											
A1			100 Year	10.51	0.28	2.29	4.8	CMP Inlet										
							18" CMP	Pipe 1508	48	6334.40	6333.30	2.29%	0.024	1.50	0.1701	0.3130	0.70425	4.5
			JUNCTION	10.69														

NOTES	1.870	= P ₂ (2 yr, 24	hr rainfall depth based	on 23 inches	mean ann	ual precip)			y=bx^m	b		ı							
	0.00	Time of Cone	ontration based on Co	areas	rado Drain	nao Manual	(Chaptor 2)		10 yrs	D 1 0115	0.506								
	0.90	Time of Conc	entration determined u			h in Watere	bed		10 yrs 25 yrs	5 7250	-0.500								
	c value a c		ervious and imperviou	is areas	Indventa	an in waters	lieu		20 yrs 100 yrs	6 9257	-0.504								
	o value a e	**100 Year St	orm Assumes 25% inc	rease in C					100 913	0.5257	0.000	1							
ΔΤΔ RUN		= Computed	Automatically																
DATA NON		=Determined	from Appendix 4.2 of (County of EI D	orado Dra	inage Manua	al												
		=Determined	from Previous Worksh	eets															
WS B	0%	=Bulking'																	
		s																	
°, 0		sues			e O	Painfall		nce											
N S S S S S S S S S S S S S S S S S S S	Area	sno		Tc (min)	osi	Intensity	Peak Runoff (cfs)	eya	Flow	High	Low	Slope (%)	n	Pipe	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft ²)	Velocity	Travel Time
BUS	(acres)	ervi		,	du	(in/hr)	(1)	Nuc.	Length (ft)	Elev (ft)	Elev (ft)			Diameter (ft)	(,			(ft/s)	(min)
		du			ŏ			ŏ											
1-2	1.57	29.24%	10 Year	29.63	0.33	0.88	0.5												
			25 Year	29.63	0.33	1.04	0.5												
B1			100 Year	29.63	0.42	1.25	0.8	CMP Inlet											
							18" CMP	Pipe 1504	70	6508.64	6507.74	1.29%	0.024	1.50	0.0390	0.1079	0.2426625	2.2	0.52
			JUNCTION	30.15															
2-3	0.21	63.57%	10 Year	1.51	0.61	3.99	0.5												
			25 Year	1.51	0.61	4.66	0.6												
B2			100 Year	1.51	0.76	5.63	0.9												
																			0.00
			JUNCTION	1.51															
	1	1		1					-		-						l.		
1-3	1.78	33.37%	10 Year	31.66	0.37	0.86	0.6												
		-	25 Year	31.66	0.37	1.00	0.7							-					
B1-B2		-	100 Year	31.66	0.46	1.21	1.0												
		-			-														0.00
			JUNCTION	31.66															
4.5	0.00	00.050/	10 Voor	0.72	0.21	1.64	0.5	[1					I 1			[
4-5	0.92	26.05%	25 Voor	0.73	0.31	1.04	0.5												
B 3			100 Year	0.73	0.31	2.22	0.5	CMP Inlot											
50			ite itea	0.75	0.55	2.52	18" CMP	Dine 1505	74	6497 67	6496 68	1 3/1%	0.024	1.50	0.0385	0 1070	0.2426625	23	0.55
			IUNCTION	0.29			10 0111	1100 1000	74	0401.01	0400.00	1.0470	0.024	1.00	0.0000	0.1075	0.2420020	2.0	0.00
			JUNCTION	9.20															
1-5	2 71	20.97%	10 Year	31.66	0.35	0.86	0.80							[
	2.71	30.87 /8	25 Year	31.66	0.35	1.00	0.94												
B1-B3			100 Year	31.66	0.43	1.21	1.42												
				0	0.10														0.00
				31.66				-											0.00
			Soliciton	51.00								II							l
3-6	2.05	24,35%	10 Year	0.31	0.29	8.94	5.4												
	2.00	27.00/0	25 Year	0.31	0.29	10.39	6.3												
B4			100 Year	0.31	0.37	12.58	9.5												
		1						Channel											0.00
				0.31															2.00
				0.01		·						·							

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
1-6	4.75	28.06%	10 Year	31.97	0.32	0.85	1.3												
			25 Year	31.97	0.32	1.00	1.5												
B1-B4			100 Year	31.97	0.41	1.20	2.3												
																			0.00
			JUNCTION	31.97															
	1		10.1/	0.54	0.00	0.74	50				1	1	1	r		1	1		[
6-7	3.98	14.47%	10 Year	0.54	0.22	6./1	5.8									1			
P5			25 fear	0.54	0.22	7.80	6.7												
55			iou real	0.54	0.27	9.44	10.1												0.00
			IUNCTION	0.54															0.00
	L		JUNCTION	0.54		1												l	
1-7	8 74	21.87%	10 Year	32.51	0.27	0.84	2.0					1							
	0.1 1	21.0170	25 Year	32.51	0.27	0.99	2.4												
B1-B5			100 Year	32.51	0.34	1.19	3.6	CMP Inlet											
							18" CMP	Pipe 1496	49	6397.40	6397.30	0.20%	0.024	1.50	0.4287	0.6405	1.441125	1.7	0.49
			JUNCTION	33.00															
													-						
7-8	4.89	18.96%	10 Year	3.10	0.25	2.77	3.4												
			25 Year	3.10	0.25	3.24	4.0												
B6			100 Year	3.10	0.31	3.91	6.0												
																			0.00
			JUNCTION	3.10															
	1		10.11						1	1	1		1	1		1	1	1	1
1-8	13.63	20.82%	10 Year	36.11	0.27	0.80	2.9												
D4 D 6			25 Year	36.11	0.27	0.94	3.4	010											
B1-B0			100 Year	36.11	0.33	1.13	5.1 21" CMD	CMP Inlet	47	6246 42	6244 74	2.00%	0.024	1 75	0.1063	0.0014	0.677094275	5.0	0.16
				00.00			21 CIVIP	Fipe 1499	47	0340.12	0344.71	3.00%	0.024	1.75	0.1063	0.2214	0.077004375	5.0	0.16
		L	JUNCTION	36.26		I	I	I	I		I	1	I	I	1	I	I	1	I
9-10	4 71	17 /0%	10 Year	12.72	0.24	1.36	1.5												
	4.71	17.43/0	25 Year	12.72	0.24	1.59	1.8			1						1			
B7			100 Year	12.72	0.30	1.92	2.7												
							18" CMP	Pipe 1494	32	6352.70	6351.60	3.44%	0.024	1.50	0.0789	0.1800	0.405	4.4	0.12
	1		JUNCTION	12.84	1	1			1										
							•												
11-12	0.09	97.16%	10 Year	6.91	0.88	1.85	0.1												
			25 Year	6.91	0.88	2.16	0.2												
B8			100 Year	6.91	1.00	2.61	0.2												
																			0.00
			JUNCTION	6.91															

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
9-12	4.80	18.94%	10 Year	19.76	0.25	1.09	1.3												
			25 Year	19.76	0.25	1.27	1.5												
B7-B8			100 Year	19.76	0.31	1.54	2.3	CMP Inlet											
							18" CMP	Pipe 1495	248	6351.60	6319.00	13.15%	0.024	1.50	0.0345	0.1000	0.225	6.8	0.61
			JUNCTION	20.36															

1.710 = P₂ (2 yr, 24 hr rainfall depth based on 21 inches mean annual precip) NOTES y=bx^m 6.0 Initial Time of Concentration for all areas m 0.90 Time of Concentration based on County of El Dorado Drainage Manual (Chapter 2) 10 yrs 4.4759 -0.507 0.10 Time of Concentration determined using Longest Travel Path in Watershed 25 yrs 5.2711 -0.507 c value a composite of pervious and impervious areas 100 yrs 6.3124 -0.504 **100 Year Storm Assumes 25% increase in C DATA RUN = Computed Automatically =Determined from Appendix 4.2 of County of El Dorado Drainage Manual =Determined from Previous Worksheets WSC =Bulkina' 0% NODES ess o Composite Rainfall % /iousr veyan Area Flow High Low Elev Pipe Velocity Travel Time UBWS & I Tc (min) Intensity Peak Runoff (cfs) Slope (%) Qn/ (D^{8/3}S^{.5}) A/D² Area (ft²) n Length (ft) Elev (ft) (acres) (ft) Diameter (ft (ft/s) (min) (in/hr) nper j o o 10 Year 1-2 0.40 1.7 4.19 37.26% 18.90 1.01 25 Year 18.90 0.40 2.0 1.19 C1 100 Year 18.90 0.50 1.44 3.0 CMP Inlet Pipe 1489/1490 0.0961 18" CMP 347 6506.10 6417.80 25.45% 0.024 1.50 0.0320 0.216225 9.2 0.63 JUNCTION 19.53 3-4 10 Year 50.28 0.22 0.61 0.6 4.35 15.07% 25 Year 50.28 0.22 0.72 0.7 100 Year C2 50.28 0.28 0.88 1.1 0.00 JUNCTION 50.28 1-4 10 Year 50.28 0.31 0.61 1.6 8.55 25.96% 25 Year 50.28 0.31 0.72 1.9 C1-C2 100 Year 50.28 0.38 0.88 2.9 0.1118 18" CMP Pipe 1491 260 6415.30 6376.50 14.92% 0.024 1.50 0.0401 0.25155 7.6 0.57 JUNCTION 50.85 5-6 16.60% 10 Year 8.22 0.23 1.54 1.1 3.09 25 Year 8.22 0.23 1.3 1.81 100 Year 8.22 2.0 C3 0.29 2.18 0.00 JUNCTION 8.22 1-6 10 Year 50.85 0.29 0.61 2.0 11.64 23.48% 25 Year 50.85 0.29 0.72 2.4 C1-C3 100 Year 50.85 0.36 3.6 0.87 18" CMP 0.1756 Pipe 1492/1493 316 6376.50 6355.60 6.61% 0.024 1.50 0.0762 0.3949875 6.1 0.86 JUNCTION 51.72 7-8 10 Year 1.04 4.39 5.19 14.75% 0.22 5.0 25 Year 1.04 5.9 0.22 5.17 C4 100 Year 1.04 0.27 8.8 6.19 0.00 JUNCTION 1.04

140 00.3 20.70 01 Veet 53.70 0.27 0.40 0 71 0.20 0 <th>SUBWS & NODES</th> <th>Area (acres)</th> <th>% Imperviousness</th> <th></th> <th>Tc (min)</th> <th>Composite C</th> <th>Rainfall Intensity (in/hr)</th> <th>Peak Runoff (cfs)</th> <th>Conveyance</th> <th>Flow Length (ft)</th> <th>High Elev (ft)</th> <th>Low Elev (ft)</th> <th>Slope (%)</th> <th>n</th> <th>Pipe Diameter (ft)</th> <th>Qn/ (D^{8/3}S^{.5})</th> <th>A/D²</th> <th>Area (ft²)</th> <th>Velocity (ft/s)</th> <th>Travel Time (min)</th>	SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
Image: book of the sector of the s	1-8	16.83	20.79%	10 Year	52.76	0.27	0.60	2.7												
ch-ch image image <				25 Year	52.76	0.27	0.71	3.2												
Image: stateImage: state </td <td>C1-C4</td> <td></td> <td></td> <td>100 Year</td> <td>52.76</td> <td>0.33</td> <td>0.86</td> <td>4.8</td> <td></td>	C1-C4			100 Year	52.76	0.33	0.86	4.8												
Image: state Juncing is 20 State State </td <td></td> <td>0.00</td>																				0.00
9+0 4.6 21:5% 10 Yer 33.1 0.27 0.70 0.9				JUNCTION	52.76															
9-10 4.45 21.5% 10 Vert 33.31 0.27 0.76 0.8					-			-	-			-						-		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9-10	4.45	21.53%	10 Year	33.31	0.27	0.76	0.9												
C5 I IOV See 33.31 0.34 1.68 CAP Intel I				25 Year	33.31	0.27	0.89	1.1												
Image: state in the s	C5			100 Year	33.31	0.34	1.08	1.6	CMP Inlet											
Image: book of the sector								18" CMP	Pipe1483	250	6417.25	6373.60	17.46%	0.024	1.50	0.0210	0.0704	0.1582875	6.8	0.61
11-12 0.07 21,84% 10 Verr 27.48 0.27 0.83 0.0 Image: constraint of the state of the stat				JUNCTION	33.92															
11-12 0.77 21.84% 10 Year 27.48 0.37 0.03 0.0 Image: constraint of the second seco		r			1	1	-		1		1		1		1			1		1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11-12	0.17	21.84%	10 Year	27.48	0.27	0.83	0.0												
C6 NO Year 27.8 0.34 1.19 0.1 Image: constraint of the constraint o				25 Year	27.48	0.27	0.98	0.0												
Image: Constraint of the second sec	Co			100 Year	27.48	0.34	1.19	0.1												
Image: second																				0.00
9-12 4.62 21.54% 10 Year 33.92 0.27 0.75 0.9 Image: Constraint of the state of t				JUNCTION	27.48															
P12 4.62 21,54% 10 Teal 33.32 0.27 0.39 0.43 0.44 0.47 0.43 0.43 0.44	0.40			10 Year	22.02	0.07	0.75		1	1	1		r		1	1	r	1	1	1
C5-C6 Image: C5-C6 Image: C5-C6 Image: C5-C6 Image: C5-C7	9-12	4.62	21.54%	25 Voar	33.92	0.27	0.75	0.9		-						-			-	
Code Indifiend 33.32 0.34 1.07 1.07 Carrinter 0 0 0 0.153 0.345375 3.2 0.16 Image: Indifiend in the term of te	C5-C6			100 Voar	33.92	0.27	0.00	1.1	CMD Inlat	-						-			-	
Image: Note of the second of the s	03-00			iou real	33.92	0.34	1.07	19" CMP	Dipo1484	30	6373 60	6373.00	2.00%	0.024	1.50	0.0620	0 1535	0.245275	2.2	0.16
Image: Second				UNICTION	24.00			10 CIVIF	Fipe1404		0373.00	0373.00	2.0078	0.024	1.50	0.0039	0.1555	0.040070	3.2	0.10
13·12 1.16 18.56% 10 Year 32.92 0.25 0.76 0.2 <td></td> <td></td> <td></td> <td>JUNCTION</td> <td>34.08</td> <td></td> <td>1</td> <td></td> <td></td>				JUNCTION	34.08													1		
1/10 10.30% 10.40 0.12	13-12	1.16	19 569/	10 Year	32.92	0.25	0.76	0.2		L								1	L	<u> </u>
C7 International interenational internate international international inte		1.10	10.30%	25 Year	32.92	0.25	0.90	0.3												
Image: Normal bar in the state of	C7	-		100 Year	32.92	0.31	1.08	0.4												
Image: style		-																		0.00
9-13 5.78 20.94% 10 Year 34.08 0.27 0.75 1.2				JUNCTION	32.92															
9-13 5.78 20.94% 10 Year 34.08 0.27 0.75 1.2					02.02															
Less Less <thless< th=""> Less Less <thl< td=""><td>9-13</td><td>5.78</td><td>20.94%</td><td>10 Year</td><td>34.08</td><td>0.27</td><td>0.75</td><td>1.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thless<>	9-13	5.78	20.94%	10 Year	34.08	0.27	0.75	1.2												
C5-C7 Image: C5-C7 Image				25 Year	34.08	0.27	0.88	1.4												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C5-C7			100 Year	34.08	0.33	1.07	2.1	CMP Inlet											
Image: constraint of the system of								18" CMP	Pipe 1485/1486	292	6373.00	6328.00	15.41%	0.024	1.50	0.0282	0.0885	0.199125	6.8	0.71
1-13 22.61 20.83% 10 Year 34.79 0.27 0.74 4.5				JUNCTION	34.79															
1-13 22.61 20.83% 10 Year 34.79 0.27 0.74 4.5																				
C1-C7 Image: C1-C7	1-13	22.61	20.83%	10 Year	34.79	0.27	0.74	4.5												
C1-C7 100 Year 34.79 0.33 1.06 7.9 CMP Inlet				25 Year	34.79	0.27	0.87	5.3												
Image: Constraint of the state of	C1-C7			100 Year	34.79	0.33	1.06	7.9	CMP Inlet											
JUNCTION 34.95								18" CMP	Pipe 1487	48	6328.00	6327.00	2.08%	0.024	1.50	0.2963	0.4724	1.0629	4.9	0.16
				JUNCTION	34.95															

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
8-14	1.88	11.32%	10 Year	1.35	0.19	3.85	1.4												
			25 Year	1.35	0.19	4.53	1.6												
C8			100 Year	1.35	0.24	5.43	2.4												
																			0.00
			JUNCTION	1.35															
1-14	24.49	20.09%	10 Year	36.30	0.26	0.72	4.6												
			25 Year	36.30	0.26	0.85	5.4												
C1-C8			100 Year	36.30	0.33	1.03	8.2												
								Channel											0.00
			JUNCTION	36.30															

1.630 = P_2 (2 yr, 24 hr rainfall depth based on 20 inches mean annual precip) NOTES y=bx^m 6.0 Initial Time of Concentration for all areas m 0.90 Time of Concentration based on County of El Dorado Drainage Manual (Chapter 2) 10 yrs 4.2681 -0.507 0.10 Time of Concentration determined using Longest Travel Path in Watershed 25 yrs 5.0264 -0.508 c value a composite of pervious and impervious areas 100 yrs 6.0429 -0.507 **100 Year Storm Assumes 25% increase in C DATA RUN = Computed Automatically =Determined from Appendix 4.2 of County of El Dorado Drainage Manual =Determined from Previous Worksheets WS D =Bulkina' 0% NODES ess o Composite Rainfall % /iousr veyan Area Flow High Low Elev Pipe Velocity Travel Time UBWS & I Tc (min) Intensity Peak Runoff (cfs) Slope (%) Qn/ (D^{8/3}S^{.5}) A/D² Area (ft²) n Length (ft) Elev (ft) (acres) (ft) Diameter (ft (ft/s) (min) (in/hr) , on mper 10 Year 1-2 0.34 1.3 2.60 30.37% 8.03 1.48 25 Year 8.03 0.34 1.6 1.74 D1 100 Year 8.03 0.43 2.10 2.3 0.1667 18" CMP Pipe 1337 54 6290.80 6289.10 3.15% 0.024 1.50 0.0714 0.375075 4.1 0.22 JUNCTION 8.25 3-4 10 Year 43.68 0.23 0.63 0.6 3.85 16.30% 25 Year 43.68 0.23 0.74 0.7 100 Year D2 43.68 0.29 0.89 1.0 0.00 JUNCTION 43.68 1-4 10 Year 43.68 0.28 0.63 1.1 6.45 21.97% 25 Year 43.68 0.28 0.74 1.3 100 Year D1-D2 43.68 0.34 0.89 2.0 0.00 JUNCTION 43.68 5-6 53.00% 10 Year 12.07 0.52 1.21 1.1 1.72 25 Year 12.07 0.52 1.3 1.42 100 Year 12.07 CMP Inlet D3 0.66 1.71 1.9 18" CMP Pipe 1410/1411 0.0775 378 6502.70 6435.90 17.67% 0.024 1.50 0.0248 0.174375 7.3 0.86 JUNCTION 12.93 7-8 10 Year 29.79 0.18 0.76 1.0 7.09 10.22% 25 Year 29.79 0.18 0.90 1.2 100 Year 29.79 0.23 1.7 D4 1.08 0.00 JUNCTION 29.79 5-8 10 Year 29.79 0.76 8.81 18.58% 0.25 1.7 25 Year 29.79 0.90 2.0 0.25 D3-D4 100 Year 29.79 0.31 3.0 1.08 CMP Inlet 0.1118 18" CMP Pipe 1389/1390 185 6403.30 6376.30 14.59% 0.024 1.50 0.0418 0.25155 7.8 0.40 JUNCTION 30.19

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
8-9	6.99	12.23%	10 Year	3.10	0.20	2.41	3.3												
			25 Year	3.10	0.20	2.83	3.9												
D5			100 Year	3.10	0.25	3.41	5.9												
																			0.00
			JUNCTION	3.10															
				-			-	-							-		-	-	
5-9	15.80	15.77%	10 Year	33.29	0.23	0.72	2.6												
			25 Year	33.29	0.23	0.85	3.0												
D3-D5			100 Year	33.29	0.28	1.02	4.6	CMP Inlet											
							15" CMP	Pipe 1380	82	6353.80	6350.95	3.48%	0.024	1.25	0.2149	0.3727	0.58234375	5.2	0.26
			JUNCTION	33.55															
	1		10.1/						1	1			1	1			r	1	1
9-10	0.92	51.96%	10 Year	1.34	0.52	3.68	1.7												
DC			25 Year	1.34	0.52	4.33	2.0												
D6			100 fear	1.34	0.64	5.20	3.1												0.00
																			0.00
			JUNCTION	1.34		1		l							l				
5-10	10 71	17 750/	10 Year	34.80	0.24	0.70	2.0		1					1			r	1	1
5-10	16.71	17.75%	25 Year	34.03	0.24	0.70	2.3										-		
D3-D6			100 Year	34.03	0.24	1.00	5.0												
20.20				54.05	0.00	1.00	5.5												0.00
			IUNCTION	34 80															0.00
	1		30101101	54.05		1		l		I			I		1				
11-12	0.52	22 12%	10 Year	7.11	0.28	1.58	0.2												
	0.02	22.1270	25 Year	7.11	0.28	1.86	0.3												
D7			100 Year	7.11	0.35	2.24	0.4												
							18" CMP	Pipe 1366	34	6364.70	6364.20	1.47%	0.024	1.50	0.0181	0.0634	0.14265	1.9	0.30
			JUNCTION	7.41															
12-13	2.71	21.91%	10 Year	1.14	0.28	4.00	3.0												
			25 Year	1.14	0.28	4.71	3.5												
D8			100 Year	1.14	0.34	5.66	5.3												
																			0.00
			JUNCTION	1.14															
	1																		-
11-13	3.23	21.95%	10 Year	8.55	0.28	1.44	1.3												
			25 Year	8.55	0.28	1.69	1.5												
D7-D8			100 Year	8.55	0.34	2.04	2.3												
					 														0.00
	I		JUNCTION	8.55		1		l	L					1					L

I+163 3.20 0.27 0.37 0.38 0.38 0.47 0.58 0.57 <t< th=""><th>SUBWS & NODES</th><th>Area (acres)</th><th>% Imperviousness</th><th></th><th>Tc (min)</th><th>Composite C</th><th>Rainfall Intensity (in/hr)</th><th>Peak Runoff (cfs)</th><th>Conveyance</th><th>Flow Length (ft)</th><th>High Elev (ft)</th><th>Low Elev (ft)</th><th>Slope (%)</th><th>n</th><th>Pipe Diameter (ft)</th><th>Qn/ (D^{8/3}S^{.5})</th><th>A/D²</th><th>Area (ft²)</th><th>Velocity (ft/s)</th><th>Travel Time (min)</th></t<>	SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
be image i	14-15	3.02	16.27%	10 Year	38.66	0.23	0.67	0.5												
De image i				25 Year	38.66	0.23	0.79	0.5												
Image: state Image: state<	D9			100 Year	38.66	0.29	0.95	0.8												
Image: state Juncing 38.2 Juncing 38.2<								12" CMP	Pipe 1365	38	6413.50	6411.57	5.08%	0.024	1.00	0.0580	0.1449	0.1449	3.8	0.17
516 6.6. 18.0% 19 Year 3.07 0.25 2.12 3.5 Image: Constraint of the set o				JUNCTION	38.82															
15-16 0.60 18.000 10 Year 3.37 0.35 2.10 3.40 0.25 2.40 4.41 0.00 0 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													-							
bit i	15-16	6.65	18.60%	10 Year	3.97	0.25	2.12	3.5												
D0 100 Ver/ 1 1.00 Ver/ 1 3.07 0.31 0.00 6.2 1 1 1 1 1 1 0.00 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>				25 Year	3.97	0.25	2.50	4.1												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D10			100 Year	3.97	0.31	3.00	6.2												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				0.00
14-16 9.67 17.87% 10 Verr 42.79 0.24 0.54 1.5 I				JUNCTION	3.97															
14.4 0.67 17.3% 10 var 42.73 0.24 0.64 1.5 1		T		10.11						T			1		1			1	Т	1
Debro 1 2.9 Year 42.73 0.24 0.75 1.8 1 <td>14-16</td> <td>9.67</td> <td>17.87%</td> <td>10 Year</td> <td>42.79</td> <td>0.24</td> <td>0.64</td> <td>1.5</td> <td></td>	14-16	9.67	17.87%	10 Year	42.79	0.24	0.64	1.5												
DB/H0 Image: Constraint of the state of the	DO D /0			25 Year	42.79	0.24	0.75	1.8												
Image: Constraint of the	D9-D10			100 Year	42.79	0.30	0.90	2.6												
Image: second								18° CMP	Pipe 1367	40	6357.60	6357.00	1.50%	0.024	1.50	0.1164	0.2355	0.529875	3.3	0.20
16-13 7.82 17.6% 10 Vear 10.65 0.24 1.29 2.4 <				JUNCTION	42.99		1													
Normal 17,82 17,83% </td <td>16.12</td> <td></td> <td></td> <td>10 Voar</td> <td>10.65</td> <td>0.24</td> <td>1.20</td> <td>24</td> <td></td> <td>r</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td> </td> <td>1</td> <td>1</td> <td></td>	16.12			10 Voar	10.65	0.24	1.20	24		r	1	1	1	1				1	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10-13	7.82	17.68%	25 Voar	10.05	0.24	1.29	2.4		-						-				
Dr. Indication Indication <td>D11</td> <td></td> <td></td> <td>100 Voar</td> <td>10.05</td> <td>0.24</td> <td>1.01</td> <td>2.9</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	D11			100 Voar	10.05	0.24	1.01	2.9		-						-				
Image: Normal synthetic syntheter syntheteric synthetic synthetic synthetic synthetic synthet	DII			iou real	10.05	0.30	1.02	4.3												0.00
Image: Second				UNICTION	40.05															0.00
13:16 17.79% 10 Year 53.64 0.24 0.57 2.4				JUNCTION	10.65		1				I	I		I					1	
N.N In Jan Oxe Sole Oxe	13-16	17.40	17 70%	10 Year	53 64	0.24	0.57	24		1			1		1				1	1
D9-D11 Image: Constraint of the constraint o		17.43	11.1376	25 Year	53.64	0.24	0.66	2.8												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D9-D11			100 Year	53.64	0.30	0.80	4.3												
Image: state																				0.00
Image: Normal condition Solution Soluti				JUNCTION	53 64															
11-16 20.72 18.44% 10 Year 53.64 0.25 0.57 2.9 Image: Constraint of the state of the st																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11-16	20.72	18.44%	10 Year	53.64	0.25	0.57	2.9												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				25 Year	53.64	0.25	0.66	3.4					1		1				1	1
Image: style sty	D7-D11			100 Year	53.64	0.31	0.80	5.1												
Image: style styl								18" CMP	Pipe 1379A	58	6314.00	6311.00	5.17%	0.024	1.50	0.1220	0.2450	0.55125	6.2	0.16
5-16 37.44 18.13% 10 Year 53.80 0.25 0.57 5.2				JUNCTION	53.80			T												
5-16 37.44 18.13% 10 Year 53.80 0.25 0.57 5.2 1																				
D3-D11 25 Year 53.80 0.25 0.66 6.1 Image: constraint of the state of the s	5-16	37.44	18.13%	10 Year	53.80	0.25	0.57	5.2												
D3-D11 100 Year 53.80 0.31 0.80 9.2 Image: Constraint of the state of the st				25 Year	53.80	0.25	0.66	6.1												
Image: Note of the state of the st	D3-D11			100 Year	53.80	0.31	0.80	9.2												
								18" CMP	Pipe 1379B	200	6311.00	6295.00	8.00%	0.024	1.50	0.1753	0.3229	0.726525	8.4	0.40
				JUNCTION	54.20															

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
10-4	1.47	37.41%	10 Year	1.84	0.40	3.14	1.8												
			25 Year	1.84	0.40	3.69	2.2												
D12			100 Year	1.84	0.50	4.44	3.3												
																			0.00
			JUNCTION	1.84															
	-			-								-							-
4-16	38.91	18.86%	10 Year	56.03	0.25	0.55	5.4												
			25 Year	56.03	0.25	0.65	6.3												
D3-D12			100 Year	56.03	0.31	0.78	9.6											<u> </u>	
																		<u> </u>	0.00
			JUNCTION	56.03															
4.40			40 ¥222	50.00	0.05	0.55		1		1	1	1	1	1			1		1
1-10	45.36	19.30%	10 Tear	56.03	0.25	0.55	6.4											───	
D1-D12			25 rear	56.03	0.25	0.65	7.5											<u> </u>	
01-012			100 1001	30.03	0.52	0.70	19" CMP	Pipe 1276	46	6294 72	6294.66	0.15%	0.024	1.50	1 5657	1 5000	2 275	2.2	0.34
			IUNCTION	EC 29			10 011	1100 1010	-10	0204.70	0204.00	0.1070	0.024	1.00	1.5057	1.5000	0.010	2.2	0.04
			JUNCTION	50.50		L		1						L			1		
17-18	7 79	19.87%	10 Year	18.35	0.26	0.98	2.0		1			1					1	T	
-	1.15	13.0770	25 Year	18.35	0.26	1.15	2.3												
D13			100 Year	18.35	0.32	1.38	3.5												
							18" CMP	Pipe 1371	40	6293.40	6291.80	4.00%	0.024	1.50	0.0942	0.2028	0.4563	5.1	0.13
			JUNCTION	18.48															
18-19	0.63	38.98%	10 Year	1.99	0.41	3.01	0.8												
			25 Year	1.99	0.41	3.55	0.9												
D14			100 Year	1.99	0.51	4.27	1.4												
																			0.00
			JUNCTION	1.99														<u> </u>	
					_				_					_					_
17-19	8.42	21.30%	10 Year	20.47	0.27	0.92	2.1											───	
			25 Year	20.47	0.27	1.08	2.5											—	
D13-D14			100 Year	20.47	0.34	1.31	3.7											<u> </u>	
																			0.00
	I		JUNCTION	20.47	I	I	I	1	L	1	1	I	1	I		I			L
1-19	50.70	10.010	10 Year	56.29	0.26	0.55	7.6												
1-19	53.78	19.61%	25 Year	56 38	0.20	0.55	9.0		ł									╂────	<u> </u>
D1-D14			100 Year	56 38	0.20	0.05	9.0		ł									╂────	<u> </u>
01-014			100 1001	30.30	0.52	0.70	15"x21" ACMP	Pine 1375	51	6282 40	6282 17	0.45%	0.024	1.50	1.0856	1 5000	3 375	27	0.32
				56 70			TO ALL FROM			5252.40	52.52.17	0.7070	0.024				0.010		0.02
	I	I	JUNCTION	50.70		1	1	1	I	1	1	I	1	I	1	1	1		L

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
19-20	0.34	33.07%	10 Year	2.93	0.36	2.48	0.3												
			25 Year	2.93	0.36	2.91	0.4												
D15			100 Year	2.93	0.46	3.51	0.5												
																			0.00
			JUNCTION	2.93															
	-										-	-							
1-20	54.12	19.70%	10 Year	59.62	0.26	0.54	7.5												
			25 Year	59.62	0.26	0.63	8.8												
D1-D15			100 Year	59.62	0.32	0.76	13.3												
																			0.00
			JUNCTION	59.62															
	1	l.	10.11		1				Т	1	1	1		1		r	T	Т	1
21-22	6.31	10.45%	10 Year	38.64	0.18	0.67	0.8												
Dic			25 Year	38.64	0.18	0.79	0.9												
016			100 fear	38.64	0.23	0.95	1.4	D 1 - 1001		0007.00		1.000/	0.004	4.00	0.4070	0.0000	0.000	10	0.40
							12° CMP	Pipe 1364	44	6387.80	6386.00	4.09%	0.024	1.00	0.1079	0.2260	0.226	4.0	0.18
			JUNCTION	38.82															
22.22			10 Year	1.04	0.10	4.10	3.0		T	1	1	1	1	1		[1	T	1
22-23	3.92	11.72%	25 Voar	1.04	0.19	4.19	3.2								-				
D17			100 Voar	1.04	0.19	4.95	5.7								-				
517	-		iou real	1.04	0.24	5.95	5.0												0.00
				4.04															0.00
			JUNCTION	1.04		1			1	I			I					1	
21-23	10.22	10.04%	10 Year	39.86	0.19	0.66	13	1	1		[1		<u> </u>				1	<u> </u>
21-25	10.23	10.94%	25 Year	39.86	0.15	0.00	1.5												
D16-D17			100 Year	39.86	0.23	0.93	22												
-																			0.00
			JUNCTION	39.86															
			Union	00.00		1			1	1			1	·				1	
24-25	4.87	11.90%	10 Year	35.70	0.20	0.70	0.7												
			25 Year	35.70	0.20	0.82	0.8		1		1	1		1			1	1	1
D18			100 Year	35.70	0.24	0.99	1.2												
							18" CMP	Pipe 1363	61	6379.22	6375.68	5.80%	0.024	1.50	0.0263	0.0811	0.182475	4.3	0.24
	l		JUNCTION	35.94							İ 👘								
			·		•														
25-23	0.62	29.86%	10 Year	1.76	0.34	3.20	0.7												
			25 Year	1.76	0.34	3.77	0.8		1	l	1	1	l	1			l	1	1
D19			100 Year	1.76	0.42	4.54	1.2		1	l	1	1	l	1			l	1	1
																			0.00
			JUNCTION	1.76															
		•				-	-		-			-			-	•	-		

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
24-25	5.49	13.93%	10 Year	37.70	0.21	0.68	0.8												
			25 Year	37.70	0.21	0.80	0.9												
D18-D19			100 Year	37.70	0.26	0.96	1.4												
																			0.00
			JUNCTION	37.70															
				-															
21-25	15.72	11.98%	10 Year	39.86	0.20	0.66	2.0												
			25 Year	39.86	0.20	0.77	2.4												
D16-D19			100 Year	39.86	0.24	0.93	3.6												
							12" CMP	Pipe 1368	47	6353.14	6350.29	6.06%	0.024	1.00	0.2320	0.3927	0.3927	6.1	0.13
			JUNCTION	39.99															
				1	1	-		1	1	1	1	1	1	1		1	1	1	1
23-26	2.41	16.64%	10 Year	0.88	0.23	4.56	2.6												
			25 Year	0.88	0.23	5.37	3.0												
D20			100 Year	0.88	0.29	6.46	4.5												
																			0.00
			JUNCTION	0.88															
01.00			40 ¥255	40.07	0.00	0.05		1	1	1	1	1	1	1		1	1	1	1
21-26	18.13	12.60%	10 fear	40.87	0.20	0.65	2.4												
D46 D20			25 fear	40.87	0.20	0.76	2.8												
D16-D20			100 Year	40.87	0.25	0.92	4.2	D 1 4000		0000 40	0040.07	0.070/	0.004	4.50	0.0000	0.4000	0.4050	0.4	0.40
							18 CMP	Pipe 1369	60	6322.19	6318.07	0.87%	0.024	1.50	0.0863	0.1936	0.4356	6.4	0.16
			JUNCTION	41.02					1										
00.07			10 Year	0.07	0.45	4.57	0.7		T	1	1	1	1	1				T	1
20-27	0.34	43.71%	25 Voar	0.87	0.45	4.37	0.7								-				
D21			100 Voar	0.07	0.45	5.39	0.0								-				
DZI			Too rear	0.87	0.06	0.48	1.2												0.00
						-													0.00
		1	JUNCTION	0.87				1	1	1	I	1	1	I		1	I	1	1
21-27	19.47	12.179/	10 Year	41.90	0.21	0.64	24												
21-21	18.47	13.17%	25 Year	41.90	0.21	0.04	2.4												
D16-D21			100 Year	41.90	0.21	0.75	4.3												
510 521				41.50	0.20	0.51	13"v17" ACMP	Pine 1370	70	6303 57	6200.03	5.20%	0.024	1 25	0 1659	0 3032	0.47375	6.0	0.19
			IUNCTION	42.00			10 x17 7,000	1100 1010	10	0000.07	0200.00	0.2070	0.024	1.20	0.1000	0.0002	0.47575	0.0	0.10
	1	1	3010011014	42.09		· · · · · ·	I	1		1	1	1	1	1			L		1
27-28	3.08	19 79%	10 Year	1.91	0.26	3.07	3.2												
	3.30	13.1370	25 Year	1.91	0.26	3.62	3.7		1					1					1
D22			100 Year	1.91	0.32	4.35	5.6												
					0.02		0.0												0.00
			IUNCTION	1 91															
	I	1	3010011014	1.31		I	1	1	1	1	I	1	1	1		1	1	1	1

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
21-28	22.45	14.34%	10 Year	44.00	0.21	0.63	3.0												
			25 Year	44.00	0.21	0.74	3.5												
D16-D22			100 Year	44.00	0.27	0.89	5.3												
							24" CMP	Pipe 1372	66	6283.30	6280.80	3.79%	0.024	2.00	0.0688	0.1623	0.6492	5.5	0.20
			JUNCTION	44.20															

NOTES	1.630	= P ₂ (2 yr, 24 I	nr rainfall depth based	on 20 inches	mean ann	ual precip)			y=bx^m										
	6.0	Initial Time of	Concentration for all a	areas						b	m								
	0.90	Time of Conc	entration based on Co	unty of El Dor	rado Draina	ige Manual (Chapter 2)		10 yrs	4.2681	-0.507	l							
	0.10	Time of Conc	entration determined u	ising Longest	t Travel Pat	h in Watersl	hed		25 yrs	5.0264	-0.508	ļ							
	c value a c	composite of p	ervious and imperviou	s areas					100 yrs	6.0429	-0.507	L							
		**100 Year Sto	orm Assumes 25% incr	rease in C															
DATA RUN		= Computed A	Automatically																
		=Determined	from Appendix 4.2 of C	Sounty of EIL	Jorado Drai	nage Manua	1												
WSE	0%	=Determineu -Bulking'	ITOIN FIEVIOUS WORKSII	eels															
ŝ	070	-Duiking ø																	1
ODE		nes			ပ			ce											
ž «č	Area	%		Tc (min)	osit	Rainfall	Peak Runoff (cfs)	şyar	Flow	High	Low Elev	Slone (%)	n	Pipe	On/ (D ^{8/3} S ^{.5})	∆/D ²	Area (ft ²)	Velocity	Travel Time
NS	(acres)	erv.			Ê	(in/hr)	r ouk realion (olo)	anve.	Length (ft)	Elev (ft)	(ft)	0.000 (70)		Diameter (ft)	un/(B 0)	A.D	Area (it)	(ft/s)	(min)
UB		đ			ပိ			ŭ											
0 1-2	0.97	20.15%	10 Year	7 12	0.41	1.58	0.6												
	0.01	00.1070	25 Year	7.12	0.41	1.85	0.7												
E1			100 Year	7.12	0.52	2.23	1.1	DI											
							18" CMP	Pipe 2638	43	6376.68	6375.49	2.77%	0.024	1.50	0.0363	0.1039	0.233775	3.2	0.23
			JUNCTION	7.34				· · ·											
2-3	0.62	45.88%	10 Year	0.68	0.47	5.18	1.5												
			25 Year	0.68	0.47	6.10	1.8												
E2			100 Year	0.68	0.58	7.33	2.6												
																			0.00
			JUNCTION	0.68															
1-3	1.58	41.77%	10 Year	8.03	0.43	1.48	1.0												
			25 Year	8.03	0.43	1.74	1.2												
E1-E2			100 Year	8.03	0.54	2.10	1.8												
							18" HDPE	Pipe 2639	39	6350.12	6349.01	2.85%	0.012	1.50	0.0289	0.0885	0.199125	6.0	0.11
			JUNCTION	8.13															
												-							
4-5	2.20	19.07%	10 Year	39.57	0.25	0.66	0.4												
			25 Year	39.57	0.25	0.78	0.4												
E3			100 Year	39.57	0.32	0.94	0.7												
							15" CMP	Pipe 1362	42	6349.60	6348.90	1.67%	0.024	1.25	0.0443	0.1119	0.17484375	2.5	0.28
			JUNCTION	39.85															
		1			1	-											1		1
5-6	4.60	21.78%	10 Year	5.09	0.27	1.87	2.4												
			25 Year	5.09	0.27	2.20	2.8												
E4			100 Year	5.09	0.34	2.65	4.2												
																			0.00
			JUNCTION	5.09	I	L	l		L		L		_						
1.0			40 Xees		0.07				-										
4-6	6.81	20.90%	10 rear	44.94	0.27	0.62	1.1												
E2.E4			25 rear	44.94	0.27	0.73	1.3												
E3-E4			TUU Tear	44.94	0.33	0.88	2.0												0.00
																			0.00
			JUNCTION	44.94	I	L	I		L		L								

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
1-6	8.39	24.84%	10 Year	44.94	0.30	0.62	1.6												
			25 Year	44.94	0.30	0.73	1.8												
E1-E4			100 Year	44.94	0.37	0.88	2.7												
							21" HDPE	Pipe 1360	41	6321.07	6319.37	4.15%	0.012	1.75	0.0241	0.0775	0.23734375	7.7	0.09
			JUNCTION	45.03															
									-		r	-		-				•	
6-7	3.02	26.52%	10 Year	0.91	0.31	4.47	4.2												
			25 Year	0.91	0.31	5.26	5.0												
E5			100 Year	0.91	0.39	6.32	7.5												
																			0.00
			JUNCTION	0.91															
	1	1						1	1	1		1	1	1	1	1	1	1	1
1-7	11.41	25.28%	10 Year	45.95	0.30	0.61	2.1												
			25 Year	45.95	0.30	0.72	2.5												
E1-E5			100 Year	45.95	0.38	0.87	3.7												
							12" CMP	Pipe 2640	45	6303.30	6301.46	4.09%	0.024	1.00	0.2944	0.4724	0.4724	5.3	0.14
			JUNCTION	46.09															
	T	1	10 1/					1	1	1		1	1	1		1	r	1	1
7-8	2.24	17.14%	10 fear	1.29	0.24	3.75	2.0												
50			25 Year	1.29	0.24	4.42	2.3												
E6			100 Year	1.29	0.30	5.31	3.5												0.00
																			0.00
			JUNCTION	1.29															
4.0			10 Year	47.00	0.00	0.00	24		1	1	[1	1			1	1	1	
1-8	13.65	23.95%	25 Voar	47.38	0.29	0.60	2.4												
E1-E6			100 Voar	47.30	0.29	0.71	2.0												
21-20			100 100	47.50	0.50	0.05	4.3	Pipe 1359	61	6284.00	6282.80	1 07%	0.024	2.00	0.0760	0 1756	0 7022	4.0	0.25
			UNICTION	47.00			24 Givir	Fipe 1550	01	0204.00	0202.00	1.37 /6	0.024	2.00	0.0700	0.1750	0.7022	4.0	0.23
		1	3010011014	47.03		-	I	1	1	1			1						1
8-9	0.76	35.84%	10 Year	1.74	0.39	3.22	0.9							1					
	0.70	00.0478	25 Year	1.74	0.39	3.79	1.1							1			1		
E7			100 Year	1.74	0.48	4.56	1.7										1		
																			0.00
-			IUNCTION	1 74															
1-9	14.41	24.57%	10 Year	49.38	0.30	0.59	2.5												
-	17.71	24.01 /0	25 Year	49.38	0.30	0.69	3.0					<u> </u>					<u> </u>		
E1-E7			100 Year	49.38	0.37	0.84	4.5		1			İ							
									1										0.00
	1		JUNCTION	49.38															
		1		40.00			1	1		I	ι	L		1	1				1

NOTES	1.630 6.0 0.90 0.10	= P_2 (2 yr, 24 Initial Time of Time of Conc Time of Conc	hr rainfall depth based Concentration for all a entration based on Co entration determined u	on 20 inches areas unty of El Dor using Longest	mean ann rado Draina Travel Pat	ual precip) age Manual (h in Waters)	Chapter 2) ned		y=bx^m 10 yrs 25 yrs	b 4.2681 5.0264	m -0.507 -0.508								
	c value a c	**100 Year St	orm Assumes 25% incr	rease in C					100 yrs	0.0429	-0.307	1							
DATA RUN		= Computed /	Automatically																
-		-Determined	from Appendix 4.2 of C	County of EI D	orado Drai	nage Manua	ıl												
		=Determined	from Previous Worksh	eets															
WS F	0%	=Bulking'																	
SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
1-2	1.91	32.19%	10 Year	27.42	0.36	0.80	0.5												
			25 Year	27.42	0.36	0.93	0.6												
F1			100 Year	27.42	0.45	1.13	1.0	CMP Inlet											
							18" CMP	Pipe 1387	46	6480.80	6480.80	0.02%	0.024	1.50	0.3718	0.5687	1.279575	0.5	1.54
			JUNCTION	28.96															
		1		1							1	1							Γ
2-3	3.87	25.71%	10 Year	3.28	0.31	2.34	2.8												
			25 Year	3.28	0.31	2.75	3.3												
F2			100 Year	3.28	0.38	3.31	4.9												
																			0.00
			JUNCTION	3.28															
		-	-									-							
1-3	5.78	27.85%	10 Year	32.23	0.32	0.73	1.4												
			25 Year	32.23	0.32	0.86	1.6												
F1-F2			100 Year	32.23	0.40	1.04	2.4	CMP Inlet											
							21" CMP	Pipe 1391	32	6447.80	6447.10	2.19%	0.024	1.75	0.0587	0.1449	0.44375625	3.6	0.15
			JUNCTION	32.38															
	T	r		1			-		-		1			1					
4-5	1.17	58.00%	10 Year	47.86	0.56	0.60	0.4												
			25 Year	47.86	0.56	0.70	0.5												
F3			100 Year	47.86	0.71	0.85	0.7												
																			0.00
			JUNCTION	47.86															
													1	1					
1-5	6.95	32.93%	10 Year	47.86	0.36	0.60	1.5												
			25 Year	47.86	0.36	0.70	1.8												
F1-F3			100 Year	47.86	0.45	0.85	2.7	CMP Inlet											
							21" CMP	Pipe 1392	82	6447.10	6444.70	2.93%	0.024	1.75	0.0562	0.1407	0.43089375	4.1	0.33
			JUNCTION	48.19															
			10.55						1										
6-7	0.37	44.62%	10 Year	21.02	0.46	0.91	0.2												
			25 Year	21.02	0.46	1.07	0.2												
F4			100 Year	21.02	0.57	1.29	0.3												
						├ ──			├ ──										0.00
	L		JUNCTION	21.02		L	l		L					I					

1-7 7.32 33.52% 10 Year 48.19 0.37 0.60 1.6 Image: Constraint of the state of th	7.0 0.07 	7.0	0.27103125	0.0885	0.0307	1.75	0.024								õ			Impe		ns
	7.0 0.07 7.0 0.07 7.0 0.07 7.0 0.00 7.0 0.00 7.0 0.00	7.0	0.27103125	0.0885	0.0307	1.75	0.024						1.6	0.60	0.37	48.19	10 Year	33.52%	7.32	1-7
F1-F4 Image: Marrian Marria Marrian Marrian Marria Marrian Marrian Marrian Mar	7.0 0.07 	7.0	0.27103125	0.0885	0.0307	1.75	0.024						1.9	0.70	0.37	48.19	25 Year			
Image: boot of the state	7.0 0.07		0.27103125	0.0885	0.0307	1.75	0.024					CMP Inlet	2.9	0.85	0.46	48.19	100 Year			F1-F4
Image: state sta	0.00							11.03%	6441.50	6444.70	29	Pipe 1393	21" CMP							
8-9 0.02 46.39% 10 Year 6.23 0.47 1.69 0.0 I <th< td=""><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48.26</td><td>JUNCTION</td><td></td><td></td><td></td></th<>	0.00															48.26	JUNCTION			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.00				-														-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.00												0.0	1.69	0.47	6.23	10 Year	46.39%	0.02	8-9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.00												0.0	1.98	0.47	6.23	25 Year			
Image: Note of the state o	0.00												0.0	2.39	0.59	6.23	100 Year			F5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
																6.23	JUNCTION			
1-9 7.35 33.55% 10 Year 48.26 0.37 0.60 1.6 Image: Constraint of the state			1	1	1	1			1	1	T	1					10.11	T		
F1-F5 Image: Constraint of the constr		—											1.6	0.60	0.37	48.26	10 Year	33.55%	7.35	1-9
P1-5 Image: Constraint of the state													1.9	0.70	0.37	48.26	25 Year			
Image: Constraint of the constraint		<u> </u>									.=-	CMP Inlet	2.9	0.85	0.46	48.26	100 Year			F1-F5
Image: Normal System Image: Normal System <th< td=""><td>6.2 0.47</td><td>6.2</td><td>0.30625</td><td>0.1000</td><td>0.0347</td><td>1.75</td><td>0.024</td><td>8.73%</td><td>6426.40</td><td>6441.50</td><td>173</td><td>Pipe 1394</td><td>21° CMP</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	6.2 0.47	6.2	0.30625	0.1000	0.0347	1.75	0.024	8.73%	6426.40	6441.50	173	Pipe 1394	21° CMP							
10-11 0.58 32.57% 10 Year 6.88 0.36 1.60 0.3 0 <th< td=""><td></td><td><u> </u></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>48.73</td><td>JUNCTION</td><td></td><td></td><td></td></th<>		<u> </u>									1					48.73	JUNCTION			
10-11 0.58 32.57% 10-12 6.88 0.36 1.60 0.33			1		1	1			1	1	1	1	0.2	1.60	0.26	6.99	10 Year			10.11
		<u>+</u>											0.3	1.00	0.30	6.00	25 Year	32.57%	0.58	10-11
E6 100 Year 6 99 0 45 2 37 0 6		<u>+</u>											0.4	1.09	0.30	0.00	100 Yoar			E6
	0.00												0.0	2.21	0.45	0.00	100 1001			10
	0.00	╄────														C 00	IUNCTION			
								I			I			1		66.0	JUNCTION	1	1	
1-11 7.02 92.49% 10 Year 48.73 0.37 0.60 1.7		T		<u> </u>					1	1	1		17	0.60	0.37	48 73	10 Year	22 / 9%	7.02	1-11
1.50 30.40% 25 Year 48.73 0.37 0.70 2.0		+											2.0	0.70	0.37	48.73	25 Year	33.40 /8	1.55	
F1-F6 100 Year 48.73 0.46 0.84 3.1 CMP Injet												CMP Inlet	3.1	0.84	0.46	48.73	100 Year			F1-F6
21°CMP Pipe 1395 131 6426.40 6414.56 9.04% 0.024 1.75 0.0365 0.1039 0.31819375	6.4 0.34	6.4	0.31819375	0.1039	0.0365	1.75	0.024	9.04%	6414.56	6426.40	131	Pipe 1395	21" CMP							
		1														49.07	JUNCTION			
12-13 2.65 18.29% 10 Year 6.67 0.25 1.63 1.1													1.1	1.63	0.25	6.67	10 Year	18.29%	2.65	12-13
25 Year 6.67 0.25 1.92 1.2													1.2	1.92	0.25	6.67	25 Year			
F7 100 Year 6.67 0.31 2.31 1.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													1.9	2.31	0.31	6.67	100 Year			F7
	0.00																			
JUNCTION 6.67																6.67	JUNCTION			
1-13 10.57 29.68% 10 Year 49.07 0.34 0.59 2.1													2.1	0.59	0.34	49.07	10 Year	29.68%	10.57	1-13
25 Year 49.07 0.34 0.70 2.5													2.5	0.70	0.34	49.07	25 Year			
F1-F7 100 Year 49.07 0.42 0.84 3.7 CMP Inlet												CMP Inlet	3.7	0.84	0.42	49.07	100 Year			F1-F7
24° CMP Pipe 1396 45 6414.32 6411.10 7.16% 0.024 2.00 0.0351 0.1039 0.4156	6.0 0.13	6.0	0.4156	0.1039	0.0351	2.00	0.024	7.16%	6411.10	6414.32	45	Pipe 1396	24" CMP							
JUNCTION 49.19																				

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D²	Area (ft ²)	Velocity (ft/s)	Travel Time (min)
14-15	0.06	52.07%	10 Year	10.48	0.52	1.30	0.0												
			25 Year	10.48	0.52	1.52	0.1												
F8			100 Year	10.48	0.65	1.84	0.1												
																			0.00
			JUNCTION	10.48															
				-	-				-			-					-	•	
1-15	10.64	29.81%	10 Year	49.19	0.34	0.59	2.1												
			25 Year	49.19	0.34	0.69	2.5												
F1-F8			100 Year	49.19	0.42	0.84	3.8	CMP Inlet											
							24" CMP	Pipe 1397	327	6411.12	6410.03	0.33%	0.024	2.00	0.1638	0.3032	1.2128	2.1	2.64
			JUNCTION	51.84															
40.47			40 ¥255	01.00	0.00	0.74		1	1	1	1	1	1	1		1	T	1	1
16-17	4.13	12.59%	10 fear	34.22	0.20	0.71	0.6												
FO			25 fear	34.22	0.20	0.84	0.7	CMB Inlet											
F9			Too rear	34.22	0.25	1.01	1.0 18" CMD	CMP Inlet	402	6416 20	6412.08	1.079/	0.024	1.50	0.0544	0.1265	0.207125	2.2	2.08
	-			07.00			16 CIVIF	Fipe 1362	402	0410.39	0412.00	1.07 %	0.024	1.50	0.0544	0.1305	0.307125	2.3	2.90
			JUNCTION	37.20		1					I		I						
18-19	0.82	20 5 89/	10 Year	10.92	0.42	1 27	0.4	1									1		
10-15	0.82	39.58%	25 Year	10.02	0.42	1.27	0.4												
F10			100 Year	10.92	0.52	1.80	0.8												
					0.02		0.0												0.00
			IUNCTION	10.92															
		1	UCINOTION	10.52		1		1			1		1	1					1
16-19	4.95	17.07%	10 Year	37.20	0.24	0.68	0.8										1		
			25 Year	37.20	0.24	0.80	0.9												
F9-F10			100 Year	37.20	0.30	0.97	1.4	CMP Inlet											
							21" CMP	Pipe 1383	150	6412.05	6410.09	1.31%	0.024	1.75	0.0442	0.1119	0.34269375	2.7	0.91
			JUNCTION	38.11															
1-19	15.58	25.77%	10 Year	51.84	0.31	0.58	2.8												
			25 Year	51.84	0.31	0.68	3.2												
F1-F10			100 Year	51.84	0.38	0.82	4.9	SDMH											
							24" CMP	Pipe 1385/1398	240	6410.03	6358.60	21.43%	0.024	2.00	0.0264	0.0811	0.3244	9.9	0.40
			JUNCTION	52.24		<u> </u>	I	l					<u> </u>						
	-																1		
20-21	6.75	19.03%	10 Year	37.55	0.25	0.68	1.2												
			25 Year	37.55	0.25	0.80	1.4												
F11	L		100 Year	37.55	0.32	0.96	2.0		L	L									
																			0.00
	I		JUNCTION	37.55	1	1	1	1	I	I	I	1		1		I	1	I	1

SUBWS & NODES	Area (acres)	% Imperviousness		Tc (min)	Composite C	Rainfall Intensity (in/hr)	Peak Runoff (cfs)	Conveyance	Flow Length (ft)	High Elev (ft)	Low Elev (ft)	Slope (%)	n	Pipe Diameter (ft)	Qn/ (D ^{8/3} S ^{.5})	A/D ²	Area (ft²)	Velocity (ft/s)	Travel Time (min)
1-21	22.33	23.73%	10 Year	52.24	0.29	0.57	3.7												
			25 Year	52.24	0.29	0.67	4.4												
F1-F11			100 Year	52.24	0.36	0.81	6.6	CMP Inlet											
							30" CMP	Pipe 1399/1400	336	6358.60	6322.90	10.63%	0.024	2.50	0.0279	0.0848	0.53	8.2	0.68
			JUNCTION	52.92															
21-22	5.25	14.54%	10 Year	0.90	0.22	4.51	5.1												
			25 Year	0.90	0.22	5.31	6.0												
F12			100 Year	0.90	0.27	6.38	9.1												
																			0.00
			JUNCTION	0.90															
					-			-	-								-	-	
1-22	27.58	21.98%	10 Year	53.82	0.28	0.57	4.3												
			25 Year	53.82	0.28	0.66	5.0												
F1-F12			100 Year	53.82	0.34	0.80	7.6												
								Channel											0.00
			JUNCTION	53.82															
																-			
23-24	2.86	20.27%	10 Year	47.47	0.26	0.60	0.5												
			25 Year	47.47	0.26	0.71	0.5												
F13			100 Year	47.47	0.33	0.85	0.8												
							12" CMP	Pipe 1361	55	6311.20	6307.80	6.18%	0.024	1.00	0.0511	0.1323	0.1323	4.0	0.23
			JUNCTION	47.69															

UNIT HYDROGRAPH METHOD RESULTS (Existing Conditions)

Global Summary R	lesuits for Rur	n "100 YR 24	HR"		
F	Project: CCH EV	VS Simulat	ion Run: 100 YR 24	HR	
Start of Run: End of Run: Compute Time:	01Jul2020, 12:0 03Jul2020, 00:0 14Sep2016, 12	00 Bas 00 Met :53:30 Con	in Model: eorologic Model: trol Specifications:	WS A 100yr 24hr 25 I 24 Hour	Inch
Show Elements: All	Elements 🔻	Volume Unit	🔿 IN 🧿 AC-FT :	Sorting: Hydrol	ogic 🔻
Hydrologic Element	Drainage A (MI2)	Peak Disch (CFS)	Time of Peak	Volume (AC-FT)	
A1	0.0116755	2.69	02Jul2020, 00:07	0.5142	
PIPE 1508	0.0116755	2.69	02Jul2020, 00:07	0.5142	
· · · · · · · · · · · · · · · · · · ·					

	Project: CCH I	EWS Simula	ition Run: 10 YR 6 H	IR	
Start of Run: End of Run: Compute Time	01Jul2020, 12 02Jul2020, 00 e: 14Sep2016, 1	2:00 Ba 1:00 Me .2:54:00 Co	sin Model: eteorologic Model: ntrol Specifications	WS A 10yr 6hr 25 Inc : 6 Hour	h
Show Elements:	ll Elements 🔻	Volume Unit	🔿 IN 🧿 AC-FT S	orting: Hydrolog	gic
Hydrologic Element	Drainage A (MI2)	Peak Dis <mark>ch</mark> (CFS)	Time of Peak	Volume (AC-FT)	
A1 PIPE 1508	0.0116755	1.87 1.87	01Jul2020, 15:07 01Jul2020, 15:07	0.1537 0.1537	

	Project: CCH E	ws simu	lation Run: 25 YR 1 I	R	
Start of Run: End of Run: Compute Time	01Jul2020, 12 02Jul2020, 12 : 14Sep2016, 1	:00 B :00 N 2:54:17 C	asin Model: 1eteorologic Model: Control Specifications	WS A 25yr 1hr 25 In : 1 Hour	ch
Show Elements: Al	l Elements 🔻	Volume Uni	. 🔿 IN 🥥 AC-FT 🧐	Sorting: Hydrold	ogic 🔻
Hydrologic Element	Drainage A (MI2)	Peak Disch (CFS)	. Time of Peak	Volume (AC-FT)	
A1	0.0116755	2.21	01Jul2020, 12:37	0.0755	
PIPE 1508	0.0116755	2.21	01Jul2020, 12:37	0.0755	

.

COUNTRY CLUB HEIGHTS ECP

.

Start of Run: End of Run:	01Jul2020, 12: 03Jul2020, 00:	00 Bas 00 Met	in Model: eorologic Model:	WS B 100yr 24hr 23 Inch 24 Hour	
Show Elements:	Il Elements 🔻	Volume Unit	IN O AC-FT S	orting: Hydrologic	
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
B1	0.0024509	0.65	02Jul2020, 00:20	0.1972	
PIPE 1504	0.0024509	0.65	02Jul2020, 00:20	0.1972	
B2	.0003350712	0.54	02Jul2020, 00:03	0.0586	
B1-B2	0.0027860	0.83	02Jul2020, 00:03	0.2558	
B3	0.0014427	0.56	02Jul2020, 00:06	0.1025	
PIPE 1505	0.0014427	0.56	02Jul2020, 00:06	0.1025	
B1-B3	0.0042287	1.27	02Jul2020, 00:03	0.3583	
B4	0.0031998	1.54	02Jul2020, 00:02	0.2114	
B1-B4	0.0074285	2.81	02Jul2020, 00:03	0.5697	
B5	0.0062224	1.78	02Jul2020, 00:02	0.2269	
B1-B5	0.0136509	4.58	02Jul2020, 00:03	0.7967	
PIPE 1496	0.0136509	4.58	02Jul2020, 00:03	0.7967	
B6	0.0076457	2.74	02Jul2020, 00:03	0.3782	
B1-B6	0.0212966	7.33	02Jul2020, 00:03	1.1749	
PIPE 1499	0.0212966	7.33	02Jul2020, 00:03	1.1749	
B7	0.0073627	1.63	02Jul2020, 00:08	0.3324	
PIPE 1494	0.0073627	1.63	02Jul2020, 00:08	0.3324	
B8	.0001369975	0.22	02Jul2020, 00:05	0.0306	
B7-B8	0.0074997	1.80	02Jul2020, 00:08	0.3630	
PIPE 1495	0.0074997	1.80	02Jul2020, 00:08	0.3630	

.

	Project: CCH E	simula	iuon kun: 10 fk 6 F	1K
Start of Run:	01Jul2020, 12	:00 Ba	sin Model:	WS B
End of Run:	02Jul2020, 00	:00 Me	teorologic Model:	10yr 6hr 23 Inch
Compute Time	: 14Sep2016, 1	2:58:35 Co	ntrol Specifications	: 6 Hour
Show Elements: Al	Elements 🔻	Volume Unit	🔿 in 🧿 AC-FT s	orting: Hydrologic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
31	0.0024509	0.43	01Jul2020, 15:19	0.0566
PIPE 1504	0.0024509	0.43	01Jul2020, 15:19	0.0566
32	.0003350712	0.30	01Jul2020, 15:03	0.0176
31-B2	0.0027860	0.51	01Jul2020, 15:03	0.0742
13	0.0014427	0.39	01Jul2020, 15:06	0.0297
PIPE 1505	0.0014427	0.39	01Jul2020, 15:06	0.0297
B1-B3	0.0042287	0.81	01Jul2020, 15:03	0.1039
34	0.0031998	1.08	01Jul2020, 15:02	0.0615
B1-B4	0.0074285	1.89	01Jul2020, 15:03	0.1654
35	0.0062224	1.24	01Jul2020, 15:02	0.0711
B1-B5	0.0136509	3.13	01Jul2020, 15:03	0.2364
PIPE 1496	0.0136509	3.13	01Jul2020, 15:03	0.2364
36	0.0076457	1.92	01Jul2020, 15:03	0.1144
81-86	0.0212966	5.05	01Jul2020, 15:03	0.3508
PIPE 1499	0.0212966	5.05	01Jul2020, 15:03	0.3508
37	0.0073627	1.15	01Jul2020, 15:08	0.1016
PIPE 1494	0.0073627	1.15	01Jul2020, 15:08	0.1016
88	.0001369975	0.15	01Jul2020, 15:05	0.0107
37-B8	0.0074997	1.27	01Jul2020, 15:08	0.1124
PIPE 1495	0.0074997	1.27	01Jul2020, 15:08	0.1124

· · · · ·

Show Elements: A	ll Elements 🔻	Volume Uni	IN O AC-FT S	orting: Hydrologic -
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume
Flement	(MID)		Time of Feak	(AC-FT)
Di			011012020 12:40	
	0.0024509	0.51	01302020, 12:49	0.0277
P2	0.0024309	0.31	013u12020, 12.49 013u12020, 12.33	0.0277
B1-B2	0.0027860	0.55	013u12020, 12.33 011u12020, 12.45	0.0082
B3	0.0027000	0.57	01302020, 12.36	0.0500
PIPE 1505	0.0014427	0.46	011ul2020, 12:36	0.0145
B1-B3	0.0042287	0.93	01Jul2020, 12:33	0.0505
B4	0.0031998	1.27	01Jul2020, 12:32	0.0301
B1-B4	0.0074285	2.20	01Jul2020, 12:33	0.0806
B5	0.0062224	1.46	01Jul2020, 12:32	0.0348
B1-B5	0.0136509	3.66	01Jul2020, 12:33	0.1154
PIPE 1496	0.0136509	3.66	01Jul2020, 12:33	0.1154
B6	0.0076457	2.26	01Jul2020, 12:33	0.0560
B1-B6	0.0212966	5.92	01Jul2020, 12:33	0.1715
PIPE 1499	0.0212966	5.92	01Jul2020, 12:33	0.1715
B7	0.0073627	1.34	01Jul2020, 12:38	0.0498
PIPE 1494	0.0073627	1.34	01Jul2020, 12:38	0.0498
B8	.0001369975	0.18	01Jul2020, 12:35	0.0052
B7-B8	0.0074997	1.49	01Jul2020, 12:38	0.0550
PIPE 1495	0.0074997	1.49	01Jul2020, 12:38	0.0550

.

Summary Result	s for Subbasin "B (I	B1-B6)"	
Project: CCH EWS			
Simulation Run: 100 YR 24 HR Subbasin: B (B1-B6)			
Start of Run: End of Run: Compute Time:	01Jul2020, 12:00 03Jul2020, 00:00 14Sep2016, 14:13:00	Basin Model: Meteorologic Model: Control Specifications:	WS B 100yr 24hr 23 Inch 24 Hour
Volume Units: 🔘 IN 🥥 AC-FT			
Computed Results			
Peak Discharge : Total Precipitation Total Loss : Total Excess :	3.46 (CFS) : 4.7704 (AC-FT) 3.6551 (AC-FT) 1.1153 (AC-FT)	Date/Time of Peak Dischar Total Direct Runoff : Total Baseflow : Discharge :	rge : 02Jul2020, 00:23 1.1153 (AC-FT) 0.0000 (AC-FT) 1.1153 (AC-FT)

.
1	a annual y ricourte		(01 00)	
		Proje	ect: CCH EWS	
		Simulation Run: 25	YR 1 HR Subbasin: B (B1-B6)
*1	Start of Run: End of Run: Compute Time:	01Jul2020, 12:00 02Jul2020, 12:00 14Sep2016, 15:05:	Basin Model: Meteorologic Model: 17 Control Specifications:	WS B 25yr 1hr 23 Inch 1 Hour
		Volume Un	its: 🔘 IN 🧿 AC-FT	
	Computed Results			
	Peak Discharge : Total Precipitation Total Loss : Total Excess :	2.81 (CFS) : 0.8234 (AC-FT) 0.6520 (AC-FT) 0.1715 (AC-FT)	Date/Time of Peak Discharg Total Direct Runoff : Total Baseflow : Discharge :	e : 01Jul2020, 12:5 0.1715 (AC-FT) 0.0000 (AC-FT) 0.1715 (AC-FT)

,

Summary Results for Subbasin "B (B7-B8)"

- 0 X

Project: CCH EWS

Simulation Run: 100 YR 24 HR Subbasin: B (B7-B8)

 Start of Run:
 01Jul2020, 12:00

 End of Run:
 03Jul2020, 00:00

 Compute Time:
 14Sep2016, 14:13:00

Basin Model:WS BMeteorologic Model:100yr 24hr 23 InchControl Specifications:24 Hour

Volume Units: 🔘 IN 🧿 AC-FT

Computed Results

Peak Discharge :	1.46 (CFS)	Date/Time of Peak Discharge :	02Jul2020, 00:13
Total Precipitation :	1.6799 (AC-FT)	Total Direct Runoff :	0.3543 (AC-FT)
Total Loss :	1.3256 (AC-FT)	Total Baseflow :	0.0000 (AC-FT)
Total Excess :	0.3543 (AC-FT)	Discharge :	0.3543 (AC-FT)

Summary Results for Subbasin "B (B7-B8)" Project: CCH EWS Simulation Run: 25 YR 1 HR Subbasin: B (B7-B8) Start of Run: 01Jul2020, 12:00 Basin Model: WS B End of Run: 02Jul2020, 12:00 Meteorologic Model: 25yr 1hr 23 Inch Control Specifications: 1 Hour Compute Time: 14Sep2016, 15:05:17 Volume Units: 🔘 IN 🥥 AC-FT Computed Results Peak Discharge : 1.20 (CFS) Date/Time of Peak Discharge : 01Jul2020, 12:43 Total Direct Runoff : 0.0549 (AC-FT) Total Precipitation : 0.2900 (AC-FT) Total Baseflow : 0.0000 (AC-FT) Total Loss : 0.2350 (AC-FT) 0.0549 (AC-FT) Discharge : 0.0549 (AC-FT) Total Excess :

Computo Timor	14 Son 2016 12	00 Met	eorologic Model:	100yr 24hr 21 Inch
Show Elements: A	l Elements 🔻	Volume Unit	IN OAC-FT S	Sorting: Hydrologic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
C2	0.0068010	0,62	02Jul2020, 00:32	0.2232
C1	0.0065541	2,59	02Jul2020, 00:13	0.6016
PIPE 1489/1490	0.0065541	2.59	02Jul2020, 00:13	0.6016
C1-C2	0.0133551	3.00	02Jul2020, 00:13	0.8248
PIPE 1491	0.0133551	3.00	02Jul2020, 00:13	0.8248
C3	0.0048265	1.09	02Jul2020, 00:06	0.1767
C1-C3	0.0181816	3.61	02Jul2020, 00:11	1.0015
PIPE 1492/1493	0.0181816	3.61	02Jul2020, 00:11	1.0015
C5	0.0069564	1.11	02Jul2020, 00:21	0.3477
PIPE 1483	0.0069564	1,11	02Jul2020, 00:21	0.3477
C6	.0002582218	0.05	02Jul2020, 00:18	0.0131
C5-C6	0.0072146	1.16	02Jul2020, 00:21	0.3607
PIPE 1484	0.0072146	1.16	02Jul2020, 00:21	0.3607
C7	0.0018152	0.25	02Jul2020, 00:21	0.0765
C5-C7	0.0090298	1.41	02Jul2020, 00:21	0.4373
PIPE 1485/1486	0.0090298	1.41	02Jul2020, 00:21	0.4373
C4	0.0081126	2.13	02Jul2020, 00:03	0.2611
C1-C7	0.0353240	5.34	02Jul2020, 00:13	1.6999
PIPE 1487	0.0353240	5.34	02Jul2020, 00:13	1.6999
C8	0.0029407	0.59	02Jul2020, 00:03	0.0708
C1-C8	0.0382647	5.93	02Jul2020, 00:03	1.7706

Show Elements: All	Classes to a la		-F	. 0 11001	
	Elements 🔻	Volume Unit	🔿 in 🧿 AC-FT s	orting: Hydrologic	•
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
C2	0.0068010	0.43	01Jul2020, 15:32	0.0739	
C1	0.0065541	1.66	01Jul2020, 15:12	0.1760	
PIPE 1489/1490	0.0065541	1.66	01Jul2020, 15:12	0.1760	
C1-C2	0.0133551	1.93	01Jul2020, 15:13	0.2499	
PIPE 1491	0.0133551	1.93	01Jul2020, 15:13	0.2499	
C3	0.0048265	0.77	01Jul2020, 15:06	0.0578	
C1-C3	0.0181816	2.40	01Jul2020, 15:10	0.3076	
PIPE 1492/1493	0.0181816	2.40	01Jul2020, 15:10	0.3076	
C5	0.0069564	0.78	01Jul2020, 15:21	0.1079	
PIPE 1483	0.0069564	0.78	01Jul2020, 15:21	0.1079	
C6	.0002582218	0.03	01Jul2020, 15:18	0.0041	
C5-C6	0.0072146	0.81	01Jul2020, 15:21	0.1120	
PIPE 1484	0.0072146	0.81	01Jul2020, 15:21	0.1120	
C7	0.0018152	0.18	01Jul2020, 15:21	0.0243	
C5-C7	0.0090298	0.99	01Jul2020, 15:21	0.1363	
PIPE 1485/1486	0.0090298	0.99	01Jul2020, 15:21	0.1363	
C4	0.0081126	1.51	01Jul2020, 15:03	0.0863	
C1-C7	0.0353240	3.72	01Jul2020, 15:03	0.5302	
PIPE 1487	0.0353240	3.72	01Jul2020, 15:03	0.5302	
C8	0.0029407	0.42	01Jul2020, 15:03	0.0240	
C1-C8	0.0382647	4.14	01Jul2020, 15:03	0.5542	

hr 21 Inch
r
Hydrologic 🔻
ume
-FT)
361
860
860
220
.220
282
.502
.502
527
527
020
547
1547
1119
1666
666
1421
:589
:589
1117
2706

Project: CCH EWS Simulation Run: 25 YR 1 HR Subbasin: C Start of Run: 01Jul2020, 12:00 Basin Model: WS C End of Run: 02Jul2020, 12:00 Meteorologic Model: 25yr 1hr 21 Inch Compute Time: 14Sep2016, 15:02:12 Control Specifications: 1 Hour Volume Units: IN OAC-FT

Computed Results

E Summary Results for Subbasin "C"

Peak Discharge : 4	4.45 (CFS)	Date/Time of Peak Discharge :	01Jul2020, 12:53
Total Precipitation : :	1.3466 (AC-FT)	Total Direct Runoff :	0.2706 (AC-FT)
Total Loss :	1.0760 (AC-FT)	Total Baseflow :	0.0000 (AC-FT)
Total Excess :	0.2706 (AC-FT)	Discharge :	0.2706 (AC-FT)

	Project: CCH E	NS Simulat	ion Run: 100 YR 24	HR	
Start of Run:	01Jul2020, 12:	00 Bas	in Model:	WS D	
End of Run:	03Jul2020, 00:	00 Met	eorologic Model:	100yr 24hr 20	Inch
Compute Time	e: 14Sep2016, 13	:07:41 Cor	trol Specifications:	24 Hour	
Show Elements:	All Elements 🔻	Volume Unit	🔿 IN 💿 AC-FT 🤉	Sorting: Hydrol	ogic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
D10	0.0102207	2.97	021ul2020, 00:04	0.4010	
D9	0.0047129	0.50	02Jul2020, 00:24	0.1575	<u> </u>
PIPE 1365	0.0047129	0.50	02Jul2020, 00:24	0.1575	
D9-D10	0.0149336	3.21	02Jul2020, 00:04	0.5586	
PIPE 1367	0.0149336	3.21	02Jul2020, 00:04	0.5586	
D11	0.0122245	2.54	02Jul2020, 00:07	0.4496	
D9-D11	0.0271581	5.29	02Jul2020, 00:04	1.0082	
D8	0.0042335	1.58	02Jul2020, 00:03	0.1997	
D7	.0008180003	0.25	02Jul2020, 00:05	0.0389	11
PIPE 1366	.0008180003	0.25	02Jul2020, 00:05	0.0389	
D7-D8	0.0050515	1.79	02Jul2020, 00:03	0.2386	
D7-D11	0.0322096	6.80	02Jul2020, 00:03	1.2467	3
PIPE 1379 A	0.0322096	6.80	02Jul2020, 00:03	1.2467	
D4	0.0110746	0.84	02Jul2020, 00:19	0.2221	
D3	0.0026892	1.94	02Jul2020, 00:08	0.3370	1.3
PIPE 1410/1411	0.0026892	1.94	02Jul2020, 00:08	0.3370	
D3-D4	0.0137638	2.53	02Jul2020, 00:09	0.5591	
PIPE 1389/1390	0.0137638	2.53	02Jul2020, 00:09	0.5591	
D5	0.0109203	2.18	02Jul2020, 00:03	0.2645	
D3-D5	0.0246841	3.99	02Jul2020, 00:04	0.8235	
PIPE 1380	0.0246841	3.99	02Jul2020, 00:04	0.8235	
D6	0.0014329	1.55	02Jul2020, 00:03	0.1755	
D3-D6	0.0261170	5.42	02Jul2020, 00:03	0.9990	
D3-D11	0.0583266	12.22	02Jul2020, 00:03	2.2457	
PIPE 1379 B	0.0583266	12.22	02Jul2020, 00:03	2.2457	,
D12	0.0022964	1.59	02Jul2020, 00:03	0.1977	}
D3-D12	0.0606230	13.81	02Jul2020, 00:03	2.4435	
D2	0.0060097	0.60	02Jul2020, 00:28	0.2012	
D1	0.0040664	1.62	02Jul2020, 00:06	0.2802	_
PIPE 1377	0.0040664	1.62	_02Jul2020, 00:06	0.2802	T

Jobal Summary	Results for Ru	n 100 YR 24	HK		
	Project: CCH EV	WS Simulat	ion Run: 100 YR 24	HR	
Start of Run:	01Jul2020, 12:	00 Bas	in Model:	WS D	
End of Run:	03Ju 2020, 00:	00 Met	eorologic Model:	100yr 24hr 20 I	in ch
Compute Time	: 14Sep2016, 13	:07:41 Con	trol Specifications:	24 Hour	
Show Elements:	All Elements 🔻	Volume Unit	O IN () AC-FT	Sorting: Hydrold	ogic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
PIPE 1377	0.0040664	1.62	02Jul2020, 00:06	0.2802	
D1-D2	0.0100761	1.92	02Jul2020, 00:06	0.4813	
D1-D12	0.0706991	15.40	02Jul2020, 00:03	2.9248	
PIPE 1376	0.0706991	15.40	02Jul2020, 00:03	2.9248	
D13	0.0121745	2.25	02Jul2020, 00:12	0.5168	
PIPE 1371	0.0121745	2.25	02Jul2020, 00:12	0.5168	
014	.0009846419	0.74	02Jul2020, 00:03	0.0899	
D1-D14	0.0838582	17.42	02Jul2020, 00:03	3.5316	
PIPE 1375	0.0838582	17.42	02Jul2020, 00:03	3.5316	
015	.0005365767	0.29	02Jul2020, 00:03	0.0402	
D1-D15	0.0843948	17.72	02Jul2020, 00:03	3.5718	
016	0.0098583	0.68	02Jul2020, 00:24	0.2021	
PIPE 1364	0.0098583	0.68	02Jul2020, 00:24	0.2021	
017	0.0061291	1.22	02Jul2020, 00:03	0.1424	
D16-D17	0.0159874	1.53	02Jul2020, 00:03	0.3445	
D18	0.0076084	0.62	02Jul2020, 00:23	0.1794	
PIPE 1363	0.0076084	0.62	02Jul2020, 00:23	0.1794	
019	.0009699581	0.49	02Jul2020, 00:03	0.0649	
D18-D19	0.0085784	0.78	02Jul2020, 00:03	0.2442	
D16-D19	0.0245658	2.31	02Jul2020, 00:03	0.5888	
PIPE 1368	0.0245658	2.31	02Jul2020, 00:03	0.5888	
020	0.0037593	1.07	02Jul2020, 00:03	0.1284	1
D16-D20	0.0283251	3.37	02Jul2020, 00:03	0.7171	-
PIPE 1369	0.0283251	3.37	02Jul2020, 00:03	0.7171	
021	.0005284094	0.57	02Jul2020, 00:03	0.0653	
D16-D21	0.0288535	3.94	02Jul2020, 00:03	0.7824	
PIPE 1370	0.0288535	3.94	02Jul2020, 00:03	0.7824	
D22	0.0062201	2.08	02Jul2020, 00:03	0.2583	
D16-D22	0.0350736	6.02	02Jul2020, 00:03	1.0407	
PIPE 1372	0.0350736	6.02	02Jul2020, 00:03	1.0407	~

siopal Summary	Results for Rul	TOAKOH	ĸ	0	
	Project: CCH E	WS Simula	ation Run: 10 YR 6 H	łR	
Start of Run:	01Jul2020, 12	:00 Ba	sin Model:	WS D	
End of Run:	02Jul2020, 00	:00 M	eteorologic Model:	10yr 6hr 20 1	inch
Compute Tim	e: 14Sep2016, 1	3:07:59 Co	ontrol Specifications	: 6 Hour	
Chause Flammanhas		Volumo Unit		orting Lhidro	lonic -
Show Elements:	An Elements V	volume onic			
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
D10	0.0102207	2.13	01Jul2020, 15:04	0.1305	
D9	0.0047129	0.35	01Jul2020, 15:24	0.0526	1 —
PIPE 1365	0.0047129	0.35	01Jul2020, 15:24	0.0526	
D9-D10	0.0149336	2,30	01Jul2020, 15:04	0.1831	
PIPE 1367	0.0149336	2.30	01Jul2020, 15:04	0.1831	
D11	0.0122245	1.81	01Jul2020, 15:07	0.1484	
D9-D11	0.0271581	3.76	01Jul2020, 15:04	0.3315	
D8	0.0042335	1.14	01Jul2020, 15:03	0.0637	
D7	.0008180003	0.18	01Jul2020, 15:05	0.0124	
PIPE 1366	.0008180003	0.18	01Jul2020, 15:05	0.0124	1
D7-D8	0.0050515	1.29	01Jul2020, 15:03	0.0761	
D7-D11	0.0322096	4.85	01Jul2020, 15:03	0.4076	
PIPE 1379 A	0.0322096	4.85	01Jul2020, 15:03	0.4076	
D4	0.0110746	0.59	01Jul2020, 15:19	0.0777	
D3	0.0026892	1.13	01Jul2020, 15:08	0.0987	
PIPE 1410/1411	0.0026892	1.13	01Jul2020, 15:08	0.0987	
D3-D4	0.0137638	1.54	01Jul2020, 15:09	0.1763	
PIPE 1389/1390	0.0137638	1.54	01Jul2020, 15:09	0,1763	
D5	0.0109203	1.57	01Jul2020, 15:03	0.0916	
D3-D5	0.0246841	2.67	01Jul2020, 15:04	0.2679	
PIPE 1380	0.0246841	2.67	01Jul2020, 15:04	0.2679	
D6	0.0014329	0.91	01Jul2020, 15:03	0.0514	
D3-D6	0.0261170	3.52	01Jul2020, 15:03	0.3193	
D3-D11	0.0583266	8.37	01Jul2020, 15:03	0.7269	
PIPE 1379 B	0.0583266	8.37	01Jul2020, 15:03	0.7269	
D12	0.0022964	1.05	01Jul2020, 15:03	0.0590	
D3-D12	0.0606230	9.41	01Jul2020, 15:03	0.7859	
D2	0.0060097	0.43	01Jul2020, 15:28	0.0672	
D1	0.0040664	1.15	01Jul2020, 15:06	0.0848	
PIPE 1377	0.0040664	1.15	01Jul2020, 15:06	0.0848	1

, .

	Project: CCH E	WS Simula	ation Run: 10 YR 6 H	R	
Start of Run:	01Jul2020, 12	:00 Ba	sin Model:	WS D	
End of Run:	02Jul2020, 00	:00 Me	eteorologic Model:	10yr 6hr 20 Ir	ich
Compute Time	: 14Sep2016, 1	3:07:59 Co	ontrol Specifications:	6 Hour	
Show Elements: Al	l Elements 🔻	Volume Unit	🔿 in 🧿 AC-FT s	orting: Hydrol	ogic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
IPE 1377	0.0040664	1.15	01Jul2020, 15:06	0.0848	
01-D2	0.0100761	1.37	01Jul2020, 15:06	0.1520	•
)1-D12	0.0706991	10.53	01Jul2020, 15:03	0.9378	
PIPE 1376	0.0706991	10.53	01Jul2020, 15:03	0.9378	
13	0.0121745	1.59	01Jul2020, 15:12	0.1661	
IPE 1371	0.0121745	1.59	01Jul2020, 15:12	0.1661	
014	.0009846419	0.47	01Jul2020, 15:03	0.0263	
01-D14	0.0838582	11.90	01Jul2020, 15:03	1.1302	
PIPE 1375	0.0838582	11.90	01Jul2020, 15:03	1.1302	
015	.0005365767	0.21	01Jul2020, 15:03	0.0122	
01-D15	0.0843948	12.11	01Jul2020, 15:03	1.1424	
016	0.0098583	0.48	01Jul2020, 15:24	0.0707	
PIPE 1364	0.0098583	0.48	01Jul2020, 15:24	0.0707	
017	0.0061291	0.88	01Jul2020, 15:03	0.0493	
016-D17	0.0159874	1.10	01Jul2020, 15:03	0.1200	
018	0.0076084	0.43	01Jul2020, 15:23	0.0621	
PIPE 1363	0.0076084	0.43	01Jul2020, 15:23	0.0621	
019	.0009699581	0.35	01Jul2020, 15:03	0.0199	
018-D19	0.0085784	0.55	01Jul2020, 15:03	0.0820	
016-D19	0.0245658	1.65	01Jul2020, 15:03	0.2020	
PIPE 1368	0.0245658	1.65	01Jul2020, 15:03	0.2020	
20	0.0037593	0.77	01Jul2020, 15:03	0.0429	=
016-D20	0.0283251	2.42	01Jul2020, 15:03	0.2449	
PIPE 1369	0.0283251	2.42	01Jul2020, 15:03	0.2449	
021	.0005284094	0.36	01Jul2020, 15:03	0.0204	
D16-D21	0.0288535	2.78	01Jul2020, 15:03	0.2654	
PIPE 1370	0.0288535	2.78	01Jul2020, 15:03	0.2654	
)22	0.0062201	1.50	01Jul2020, 15:03	0.0845	
016-D22	0.0350736	4.28	01Jul2020, 15:03	0.3499	

	Project: CCH E	WS Simula	tion Run: 25 YR 1 H	IR	
Start of Run:	01Jul2020, 12	:00 Ba	sin Model:	WSD	
End of Run:	02Jul2020, 12	:UU Me	eteorologic Model:	25yr 1hr 20 In	ich
Compute Time	: 14Sep2016, 1	3:08:09 CO	introl Specifications	: 1 Hour	
Show Elements: Al	l Elements 👻	Volume Uni	🔿 IN 🧿 AC-FT S	Sorting: Hydrol	ogic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
D10	0.0102207	2.44	01Jul2020, 12:34	0.0639	
D9	0.0047129	0.41	01Jul2020, 12:55	0.0258	-
PIPE 1365	0.0047129	0,41	01Jul2020, 12:55	0.0258	
D9-D10	0.0149336	2.60	01Jul2020, 12:34	0.0896	
PIPE 1367	0.0149336	2.60	01Jul2020, 12:34	0.0896	
D11	0.0122245	2.11	01Jul2020, 12:37	0.0726	
D9-D11	0.0271581	4.33	01Jul2020, 12:34	0.1623	
D8	0.0042335	1.29	01Jul2020, 12:33	0.0312	
D7	.0008180003	0.20	01Jul2020, 12:35	0.0061	1
PIPE 1366	.0008180003	0.20	01Jul2020, 12:35	0.0061	
D7-D8	0.0050515	1.47	01Jul2020, 12:33	0.0372	
D7-D11	0.0322096	5.57	01Jul2020, 12:33	0.1995	
PIPE 1379 A	0.0322096	5.57	01Jul2020, 12:33	0.1995	
D4	0.0110746	0.69	01Jul2020, 12:49	0.0380	
D3	0.0026892	1.33	01Jul2020, 12:38	0.0479	
PIPE 1410/1411	0.0026892	1.33	01Jul2020, 12:38	0.0479	
D3-D4	0.0137638	1.79	01Jul2020, 12:39	0.0859	
PIPE 1389/1390	0.0137638	1.79	01Jul2020, 12:39	0.0859	
D5	0.0109203	1.79	01Jul2020, 12:33	0.0449	
D3-D5	0.0246841	3.07	01Jul2020, 12:34	0.1308	
PIPE 1380	0.0246841	3.07	01Jul2020, 12:34	0.1308	L
D6	0.0014329	1.04	01Jul2020, 12:33	0.0250	
D3-D6	0.0261170	4.03	01Jul2020, 12:33	0.1558	
D3-D11	0.0583266	9,60	01Jul2020, 12:33	0.3553	[
PIPE 1379 B	0.0583266	9.60	01Jul2020, 12:33	0.3553	i i
D12	0.0022964	1.19	01Jul2020, 12:33	0.0289	
D3-D12	0.0606230	10.79	01Jul2020, 12:33	0.3841	
D2	0.0060097	0.49	01Jul2020, 12:58	0.0329	
D1	0.0040664	1.34	01Jul2020, 12:36	0.0415	

	Project: CCH E	EWS Simula	ation Run: 25 YR 1 H	IR	
Start of Run: End of Run: Compute Time	01Jul2020, 12 02Jul2020, 12 2: 14Sep2016, 1	:00 Ba :00 Me 3:08:09 Co	sin Model: eteorologic Model: introl Specifications:	WS D 25yr 1hr 20 In 1 Hour	ch
Show Elements: A	ll Elements 💌	Volume Uni	🔿 IN 🧿 AC-FT S	orting: Hydrold	ogic 🗸
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
PIPE 1377	0.0040664	1.34	01102020, 12:36	0.0415	
D1-D2	0.0100761	1.53	013ul2020, 12:36	0.0744	~
D1-D12	0.0706991	12.04	01Jul2020, 12:33	0.4585	
PIPE 1376	0.0706991	12.04	011ul2020, 12:33	0.4585	
D13	0.0121745	1.87	01.1ul2020, 12:42	0.0813	
PIPE 1371	0.0121745	1.87	01Jul2020, 12:42	0.0813	
D14	.0009846419	0.53	01Jul2020, 12:33	0.0129	
D1-D14	0.0838582	13.63	01Jul2020, 12:33	0.5527	
PIPE 1375	0.0838582	13.63	01Jul2020, 12:33	0.5527	
D15	.0005365767	0.24	01Jul2020, 12:33	0.0060	
D1-D15	0.0843948	13.87	01Jui2020, 12:33	0.5587	
D16	0.0098583	0.55	01Jul2020, 12:55	0.0346	
PIPE 1364	0.0098583	0.55	01Jul2020, 12:55	0.0346	
D17	0.0061291	1.00	01Jul2020, 12:33	0.0241	
D16-D17	0.0159874	1.19	01Jul2020, 12:33	0.0587	
D18	0.0076084	0.50	01Jul2020, 12:53	0.0304	
PIPE 1363	0.0076084	0.50	01Jul2020, 12:53	0.0304	1.3
019	.0009699581	0.40	01Jul2020, 12:33	0.0097	
D18-D19	0.0085784	0.59	01Jul2020, 12:33	0.0401	
D16-D19	0.0245658	1.79	01Jul2020, 12:33	0.0989	
PIPE 1368	0.0245658	1.79	01Jul2020, 12:33	0.0989	
020	0.0037593	0.87	01Jul2020, 12:33	0.0210	==
D16-D20	0.0283251	2.66	01Jul2020, 12:33	0.1199	
PIPE 1369	0.0283251	2.66	01Jul2020, 12:33	0.1199	
021	.0005284094	0.41	01Jul2020, 12:33	0.0100	
D16-D21	0.0288535	3.07	01Jul2020, 12:33	0.1299	
PIPE 1370	0.0288535	3.07	01Jul2020, 12:33	0.1299	1 1 3
022	0.0062201	1.70	01Jul2020, 12:33	0.0414	
D16-D22	0.0350736	4.78	01Jul2020, 12:33	0.1713	
PIPE 1372	0.0350736	4.78	01102020 12:33	0 1713	-

Summary Results for	r Subbasin "D (D1	-D15)"	
Simul	Project: (ation Run: 100 YR 24	CCH EWS 4 HR Subbasin: D (D1-D	015)
Start of Run: 01Ju End of Run: 03Ju Compute Time: 14Se	l2020, 12:00 l2020, 00:00 ep2016, 15:34:49	Basin Model: Meteorologic Model: Control Specifications:	WS D 100yr 24hr 20 Inch 24 Hour
	Volume Units:	🔵 IN 🧿 AC-FT	
Computed Results			
Peak Discharge : 8.7 Total Precipitation : 16 Total Loss : 12 Total Excess : 3.4	75 (CFS) Da .4281 (AC-FT) To .9974 (AC-FT) To 4307 (AC-FT) Di	ate/Time of Peak Dischar otal Direct Runoff : otal Baseflow : scharge :	rge : 02Jul2020, 00:37 3.4307 (AC-FT) 0.0000 (AC-FT) 3.4307 (AC-FT)

Project: CCH EWS Simulation Run: 25 YR 1 HR Subbasin: D (D1-D15) WS D Start of Run: 01Jul2020, 12:00 Basin Model: Meteorologic Model: 25yr 1hr 20 Inch End of Run: 02Jul2020, 12:00 Compute Time: 14Sep2016, 15:35:08 Control Specifications: 1 Hour Volume Units: 🔘 IN 🥥 AC-FT Computed Results Date/Time of Peak Discharge : 01Jul2020, 13:08 Peak Discharge : 6.83 (CFS) Total Precipitation: 2.8351 (AC-FT) Total Direct Runoff : 0.5586 (AC-FT) 0.0000 (AC-FT) Total Loss : 2.2765 (AC-FT) Total Baseflow :

Discharge :

0.5586 (AC-FT)

0

Summary Results for Subbasin "D (D1-D15)"

0.5586 (AC-FT)

Total Excess :

Summary Results for Subbasin "D (D16-D22)" • Project: CCH EWS Simulation Run: 100 YR 24 HR Subbasin: D (D16-D22) WS D Start of Run: 01Jul2020, 12:00 Basin Model: 03Jul2020, 00:00 Meteorologic Model: 100yr 24hr 20 Inch End of Run: Control Specifications: 24 Hour Compute Time: 14Sep2016, 15:34:49 Volume Units: 🔘 IN 🧿 AC-FT Computed Results Date/Time of Peak Discharge : 02Jul2020, 00:28 Peak Discharge : 3.09 (CFS) 1.0062 (AC-FT) Total Precipitation : 6.8273 (AC-FT) Total Direct Runoff : Total Loss : Total Baseflow : 0.0000 (AC-FT) 5.8211 (AC-FT) 1.0062 (AC-FT) Discharge : 1.0062 (AC-FT) Total Excess :

Summary Results	for Subbasin "D (D16-D22)"	
	Proje	ct: CCH E <mark>W</mark> S	
S	imulation Run: 25 YF	R 1 HR Subbasin: D (D16-D2	22)
Start of Run: End of Run: Compute Time:	01Jul2020, 12:00 02Jul2020, 12:00 14Sep2016, 15:35:0	Basin Model: Meteorologic Model: 08 Control Specifications:	WS D 25yr 1hr 20 Inch 1 Hour
	Volume Unit	s: 🔘 IN 🧿 AC-FT	
Computed Results			
Peak Discharge : Total Precipitation Total Loss : Total Excess :	2.49 (CFS) : 1.1783 (AC-FT) 1.0093 (AC-FT) 0.1690 (AC-FT)	Date/Time of Peak Discharg Total Direct Runoff : Total Baseflow : Discharge :	e : 01Jul2020, 12:59 0.1690 (AC-FT) 0.0000 (AC-FT) 0.1690 (AC-FT)

,

Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
F4	0.0071910	2.35	021012020.00:04	0.3373
E3	0.0034438	0.43	021ul2020, 00:25	0.1383
PIPE 1362	0.0034438	0.43	021ul2020, 00:25	0.1383
E3-E4	0.0106348	2.55	02Jul2020, 00:04	0.4756
E1	0.0015110	0.90	02Jul2020, 00:05	0.1384
PIPE 2638	0.0015110	0.90	02Jul2020, 00:05	0.1384
E2	.0009624638	0.90	02Jul2020, 00:03	0.1038
E1-E2	0.0024735	1.67	02Jul2020, 00:03	0.2422
PIPE 2639	0.0024735	1.67	02Jul2020, 00:03	0.2422
E1-E4	0.0131083	4.10	02Jul2020, 00:03	0.7177
PIPE 1360	0.0131083	4.10	02Jul2020, 00:03	0.7177
E5	0.0047201	2.13	02Jul2020, 00:03	0.2767
E1-E5	0.0178284	6.24	02Jul2020, 00:03	0.9945
PIPE 2640	0.0178284	6.24	02Jul2020, 00:03	0.9945
E6	0.0035022	1.02	02Jul2020, 00:03	0.1251
E1-E6	0.0213306	7.26	02Jul2020, 00:03	1.1196
PIPE 1358	0.0213306	7.26	02Jul2020, 00:03	1.1196
E7	0.0011818	0.77	02Jul2020, 00:03	0.0971
E1-E7	0.0225124	8.03	02Jul2020, 00:03	1.2167

.

	Project: CCH E	EWS Simula	ition Run: 10 YR 6 H	IR	
Start of Run:	01Jul2020, 12	:00 Ba	sin Model:	WSE	
End of Run:	02Jul2020, 00	:00 Me	eteorologic Model:	10yr 6hr 20 Inch	
Compute Time	e: 14Sep2016, 1	.3:04:16 Co	ntrol Specifications	6 Hour	
Show Elements: A	ll Elements 👻	Volume Unit	🔿 IN 🧿 AC-FT s	orting: Hydrologi	c 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
Ξ4	0.0071910	1.68	01Jul2020, 15:04	0.1075	
Ξ3	0.0034438	0.30	01Jul2020, 15:25	0.0451	
PIPE 1362	0.0034438	0.30	01Jul2020, 15:25	0.0451	
E3-E4	0.0106348	1.82	01Jul2020, 15:04	0.1526	
=1	0.0015110	0.58	01Jul2020, 15:05	0.0406	
PIPE 2638	0.0015110	0.58	01Jul2020, 15:05	0.0406	
2	.0009624638	0.54	01Jul2020, 15:02	0.0303	
E1-E2	0.0024735	1.03	01Jul2020, 15:03	0.0709	
PIPE 2639	0.0024735	1.03	01Jul2020, 15:03	0.0709	
E1-E4	0.0131083	2.77	01Jul2020, 15:03	0.2235	
PIPE 1360	0.0131083	2.77	01Jul2020, 15:03	0.2235	
=5	0.0047201	1.54	01Jul2020, 15:03	0.0859	
E1-E5	0.0178284	4.31	01Jul2020, 15:03	0.3094	
PIPE 2640	0.0178284	4.31	01Jul2020, 15:03	0.3094	
Ξ6	0.0035022	0.74	01Jul2020, 15:03	0.0412	
E1-E6	0.0213306	5.04	01Jul2020, 15:03	0.3506	
PIPE 1358	0.0213306	5.04	01Jul2020, 15:03	0.3506	
E7	0.0011818	0.52	01Jul2020, 15:03	0.0291	
E1-E7	0.0225124	5.56	01Jul2020, 15:03	0.3797	

.

Show Elements: Al	l Elements 💌	Volume Uni	🔿 IN 🧿 AC-FT S	orting: Hydrologic	•
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume	
Element	(MI2)	(CFS)		(AC-FT)	
F4	0.0071910	1.93	01102020 12:34	0.0526	
E3	0.0034438	0.35	013u12020, 12:51	0.0221	
PIPE 1362	0.0034438	0.35	01Jul2020, 12:56	0.0221	
E3-E4	0.0106348	2.06	01Jul2020, 12:34	0.0747	
E1	0.0015110	0.67	01Jul2020, 12:35	0.0199	
PIPE 2638	0.0015110	0.67	01Jul2020, 12:35	0.0199	
E2	.0009624638	0.62	01Jul2020, 12:33	0.0148	
E1-E2	0.0024735	1.19	01Jul2020, 12:33	0.0347	
PIPE 2639	0.0024735	1.19	01Jul2020, 12:33	0.0347	
E1-E4	0.0131083	3.16	01Jul2020, 12:33	0.1094	
PIPE 1360	0.0131083	3.16	01Jul2020, 12:33	0.1094	
E5	0.0047201	1.74	01Jul2020, 12:33	0.0421	- 1
E1-E5	0.0178284	4.91	01Jul2020, 12:33	0.1515	
PIPE 2640	0.0178284	4.91	01Jul2020, 12:33	0.1515	- 1
E6	0.0035022	0.84	01Jul2020, 12:33	0.0202	
E1-E6	0.0213306	5.74	01Jul2020, 12:33	0.1716	- 1
PIPE 1358	0.0213306	5.74	01Jul2020, 12:33	0.1716	
E7	0.0011818	0.59	01Jul2020, 12:33	0.0142	
E1-E7	0.0225124	6.33	01Jul2020, 12:33	0.1859	- 6

Project: CCH EWS Simulation Run: 100 YR 24 HR Subbasin: E Start of Run: 01Jul2020, 12:00 Basin Model: WS E End of Run: 03Jul2020, 00:00 Meteorologic Model: 100yr 24hr 20 Inch Compute Time: 14Sep2016, 15:51:32 Control Specifications: 24 Hour

Volume Units: 🔘 IN 🧿 AC-FT

Computed Results

Summary Results for Subbasin "E"

Peak Discharge :	3.21 (CFS)	Date/Time of Peak Discharge :	02Jul2020, 00:31
Total Precipitation :	4.3823 (AC-FT)	Total Direct Runoff :	1.1747 (AC-FT)
Total Loss :	3.2075 (AC-FT)	Total Baseflow :	0.0000 (AC-FT)
Total Excess :	1.1747 (AC-FT)	Discharge :	1.1747 (AC-FT)

	Project: CCH	EWS Simul	ation Run: 100 YR 2	4 HR
Start of Run: End of Run: Compute Tim	01Jul2020, 12 03Jul2020, 00 ie: 19Sep2016, 1	2:00 Ba 0:00 M L3:19:26 Co	asin Model: eteorologic Model: ontrol Specifications	WS F 100yr 24hr 20 Inch : 24 Hour
Show Elements:	All Elements 🔻	Volume Units	: () IN () AC-FT	Sorting: Hydrologic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
F2	0.0060511	2.52	02102020.00:03	0.3396
F1	0.0029872	0.76	02Jul2020. 00:18	0.2190
PIPE 1387	0.0029872	0,76	02Jul2020, 00:18	0,2190
F1-F2	0.0090383	2.89	02Jul2020, 00:03	0.5586
PIPE 1391	0.0090383	2.89	02Jul2020, 00:03	0,5586
F3	0.0018288	0.76	02Jul2020, 00:31	0.2493
F1-F3	0.0108671	3.21	02Jul2020, 00:03	0.8079
PIPE 1392	0.0108671	3.21	02Jul2020, 00:03	0.8079
F4	.0005781896	0.26	02Jul2020, 00:14	0.0604
F1-F4	0.0114453	3.34	02Jul2020, 00:03	0.8683
PIPE 1393	0.0114453	3.34	02Jul2020, 00:03	0.8683
F5	.0000337469	0.03	02Jul2020, 00:05	0.0037
F1-F5	0.0114790	3.36	02Jul2020, 00:03	0.8721
PIPE 1394	0.0114790	3.36	02Jul2020, 00:03	0.8721
F6	.0009077573	0.41	02Jul2020, 00:05	0.0672
F1-F6	0.0123868	3.74	02Jul2020, 00:04	0.9392
PIPE 1395	0.0123868	3.74	02Jul2020, 00:04	0.9392
F7	0.0041354	1.06	02Jul2020, 00:05	0.1569
F1-F7	0.0165222	4.76	02Jul2020, 00:04	1.0961
PIPE 1396	0.0165222	4.76	02Jul2020, 00:04	1.0961
F8	.000099661	0.07	02Jul2020, 00:07	0.0122
F1-F8	0.0166219	4.82	02Jul2020, 00:04	1.1083
PIPE 1397	0.0166219	4.82	02Jul2020, 00:05	1.1083
F9	0.0064462	0.56	02Jul2020, 00:22	0.1630
PIPE 1381/1382	0.0064462	0.56	02Jul2020, 00:23	0.1630
F10	0.0012835	0.66	02Jul2020, 00:08	0.1185
F9-F10	0.0077297	0.99	02Jul2020, 00:08	0.2814
PIPE 1383	0.0077297	0.99	02Jul2020, 00:08	0.2814
F1-F10	0.0243516	5.68	02Jul2020, 00:05	1.3898
PIPE 1385/1398	0.0243516	5.68	02Jul2020, 00:05	1.3898
F11	0.0105468	1.34	02Jul2020, 00:24	0.4225
H1-F11	0.0348984	6.36	02Jul2020, 00:05	1.8123
PIPE 1399/1400	0.0348984	6.36	UZJUI2020, 00:05	1.8123
F12	0.0081956	2.03	02Jul2020, 00:03	0.2519
F1-F12	0.0430940	7.67	UZJUI2020, 00:03	2.0642
	0.0044619	0.54		0.2150
PIPE 1361	0.0044619	0.54	02Jul2020, 00:30	0.2150

.

Global Summary Results for Run "10 YR 6 HR"

Project: CCH EWS

Simulation Run: 10 YR 6 HR

Start of Run:01Jul2020, 12:00Basin Model:WS FEnd of Run:02Jul2020, 00:00Meteorologic Model:10yr 6hr 20 InchCompute Time:19Sep2016, 13:19:31Control Specifications:6 Hour

Ludrala di-	Dreinence A	Deels Direk	Time of Deck	Mahura A
Hydrologic	Drainage A	Peak Disch	l ime of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
F2	0.0060511	1.81	01Jul2020, 15:03	0.1068
F1	0.0029872	0.52	01Jul2020, 15:17	0.0660
PIPE 1387	0.0029872	0.52	01Jul2020, 15:17	0.0660
F1-F2	0.0090383	2.07	01Jul2020, 15:03	0.1728
PIPE 1391	0.0090383	2.07	01Jul2020, 15:03	0.1728
F3	0.0018288	0.44	01Jul2020, 15:30	0.0741
F1-F3	0.0108671	2.26	01Jul2020, 15:03	0.2468
PIPE 1392	0.0108671	2.26	01Jul2020, 15:03	0.2468
F4	.0005781896	0.16	01Jul2020, 15:13	0.0177
F1-F4	0.0114453	2.35	01Jul2020, 15:03	0.2645
PIPE 1393	0.0114453	2.35	01Jul2020, 15:03	0.2645
F5	.0000337469	0.02	01Jul2020, 15:05	0.0011
F1-F5	0.0114790	2.36	01Jul2020, 15:03	0.2656
PIPE 1394	0.0114790	2.36	01Jul2020, 15:03	0.2656
F6	.0009077573	0.29	01Jul2020, 15:05	0.0203
F1-F6	0.0123868	2.62	01Jul2020, 15:04	0.2859
PIPE 1395	0.0123868	2.62	01Jul2020, 15:04	0.2859
F7	0.0041354	0.75	01Jul2020, 15:05	0.0519
F1-F7	0.0165222	3.35	01Jul2020, 15:04	0.3378
PIPE 1396	0.0165222	3.35	01Jul2020, 15:04	0.3378
F8	.000099661	0.04	01Jul2020, 15:07	0.0036
F1-F8	0.0166219	3.39	01Jul2020, 15:04	0.3414
PIPE 1397	0.0166219	3.39	01Jul2020, 15:05	0.3414
F9	0.0064462	0.40	01Jul2020, 15:22	0.0557
PIPE 1381/1382	0.0064462	0,40	01Jul2020, 15:23	0.0557
F10	0.0012835	0.42	01Jul2020, 15:07	0.0349
F9-F10	0.0077297	0.65	01Jul2020, 15:08	0.0905
PIPE 1383	0.0077297	0.65	01Jul2020, 15:08	0.0905
F1-F10	0.0243516	3.96	01Jul2020, 15:05	0.4319
PIPE 1385/1398	0.0243516	3.96	01Jul2020, 15:05	0.4319
F11	0.0105468	0.94	01Jul2020, 15:24	0.1377
F1-F11	0.0348984	4.43	01Jul2020, 15:05	0.5697
PIPE 1399/1400	0.0348984	4.43	01Jul2020, 15:05	0.5697
F12	0.0081956	1.46	01Jul2020, 15:03	0.0818
F1-F12	0.0430940	5.40	01Jul2020, 15:03	0.6514
F13	0.0044619	0.38	01Jul2020, 15:30	0.0621
PIPE 1361	0.0044619	0.38	01Jul2020, 15:30	0.0621
F (F1-F12)	0.0430939	3.70	01Jul2020, 15:34	0.6501

	Project: CCH	EWS Simu	lation Run: 25 YR 1	HR
Start of Run	- 01 Tul2020_1	2.00 ם	asin Model	WS F
End of Run		2.00 B	leteorologic Model	25vr 1br 20 Inch
Compute Tim	ne: 195en2016.	13:19:37 C	ontrol Specification	s: 1 Hour
compace rin	ici 1950cp2010;	10.10.07	ond of opecandudon	
Show Elements: A	ll Elements 👻	Volume Units:	O IN O AC-FT	Sorting: Hydrologic 🔻
Hydrologic	Drainage A	Peak Disch	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
F2	0.0060511	2.07	01Jul2020, 12:33	0.0523
F1	0.0029872	0.61	01Jul2020, 12:48	0.0323
PIPE 1387	0.0029872	0.61	01Jul2020, 12:48	0.0323
F1-F2	0.0090383	2.35	01Jul2020, 12:33	0.0846
PIPE 1391	0.0090383	2.35	01Jul2020, 12:33	0.0846
F3	0.0018288	0.50	01Jul2020, 13:01	0.0356
F1-F3	0.0108671	2.48	01Jul2020, 12:33	0.1202
PIPE 1392	0.0108671	2.48	01Jul2020, 12:33	0.1202
F4	.0005781896	0.19	01Jul2020, 12:44	0.0087
F1-F4	0.0114453	2.58	01Jul2020, 12:33	0.1289
PIPE 1393	0.0114453	2.58	01Jul2020, 12:33	0.1289
F5	.0000337469	0.02	01Jul2020, 12:35	0.0005
F1-F5	0.0114790	2.60	01Jul2020, 12:33	0.1294
PIPE 1394	0.0114790	2.60	01Jul2020, 12:33	0.1294
F6	.0009077573	0.34	01Jul2020, 12:35	0.0099
F1-F6	0.0123868	2.92	01Jul2020, 12:34	0.1393
PIPE 1395	0.0123868	2.92	01Jul2020, 12:34	0.1393
F7	0.0041354	0.87	01Jul2020, 12:35	0.0254
F1-F7	0.0165222	3.76	01Jul2020, 12:34	0.1647
PIPE 1396	0.0165222	3.76	01Jul2020, 12:34	0.1647
F8	.000099661	0.05	01Jul2020, 12:37	0.0017
F1-F8	0.0166219	3.80	01Jul2020, 12:34	0.1665
PIPE 1397	0.0166219	3.80	01Jul2020, 12:35	0.1665
F9	0.0064462	0.46	01Jul2020, 12:52	0.0273
PIPE 1381/1382	0.0064462	0.46	01Jul2020, 12:53	0.0273
F10	0.0012835	0.49	01Jul2020, 12:37	0.0171
F9-F10	0.0077297	0.74	01Jul2020, 12:39	0.0443
PIPE 1383	0.0077297	0.74	01Jul2020, 12:39	0.0443
F1-F10	0.0243516	4.44	01Jul2020, 12:35	0.2108
PIPE 1385/1398	0.0243516	4.44	01Jul2020, 12:35	0.2108
F11	0.0105468	1.09	01Jul2020, 12:54	0.0674
F1-F11	0.0348984	4.91	01Jul2020, 12:35	0.2782
PIPE 1399/1400	0.0348984	4.91	01Jul2020, 12:35	0.2782
F12	0.0081956	1.66	01Jul2020, 12:33	0.0400
F1-F12	0.0430940	5.98	01Jul2020, 12:33	0.3182
F13	0.0044619	0.43	01Jul2020, 13:01	0.0304
PIPE 1361	0.0044619	0.43	01Jul2020, 13:01	0.0304
E (E1-E12)	0.0430030	4 16	01102020 13:05	0.3182
Summary Result	s for Subbasin "F (F	F1-F12)"		
--	--	--	--	
	Proje	ect: CCH EWS		
	Simulation Run: 100	YR 24 HR Subbasin: F (F1	-F12)	
Start of Run: End of Run: Compute Time	01Jul2020, 12:00 03Jul2020, 00:00 : 19Sep2016, 13:19:2	Basin Model: Meteorologic Model: 6 Control Specifications	WS F 100yr 24hr 20 Inch : 24 Hour	
	Volume Uni	its: 🔘 IN 🧿 AC-FT		
Computed Results				
Peak Discharge : Total Precipitatio Total Loss : Total Excess :	5.25 (CFS) n : 8.3885 (AC-FT) 6.4191 (AC-FT) 1.9694 (AC-FT)	Date/Time of Peak Discha Total Direct Runoff : Total Baseflow : Discharge :	rge : 02Jul2020, 00:34 1.9694 (AC-FT) 0.0000 (AC-FT) 1.9694 (AC-FT)	

III Summary Results for Subbasin "F (F	1-F12)"								
Project: CCH EWS									
Simulation Run: 25 YR 1 HR Subbasin: F (F1-F12)									
Start of Run: 01Jul2020, 12:00 End of Run: 02Jul2020, 12:00 Compute Time: 19Sep2016, 13:19:	Basin Model: WS F Meteorologic Model: 25yr 1hr 20 Inch 37 Control Specifications: 1 Hour								
Volume Uni	ts: 🔘 IN 💿 AC-FT								
Computed Results									
Peak Discharge : 4.16 (CFS) Total Precipitation : 1.4476 (AC-FT) Total Loss : 1.1294 (AC-FT) Total Excess : 0.3182 (AC-FT)	Date/Time of Peak Discharge : 01Jul2020, 13:05Total Direct Runoff :0.3182 (AC-FT)Total Baseflow :0.0000 (AC-FT)Discharge :0.3182 (AC-FT)								

COUNTRY CLUB HEIGHTS ECP

E Summary Results for Subbasin "F1	3"							
Project: CCH EWS								
Simulation Run: 1	.00 YR 24 HR Subbasin: F13							
Start of Run: 01Jul2020, 12:00 End of Run: 03Jul2020, 00:00 Compute Time: 15Sep2016, 09:56:0	Basin Model: WS F Meteorologic Model: 100yr 24hr 20 Inch 5 Control Specifications: 24 Hour							
Volume Un	its: 🔘 IN 🥥 AC-FT							
Computed Results								
Peak Discharge: 0.54 (CFS) Total Precipitation: 0.8685 (AC-FT) Total Loss: 0.6535 (AC-FT) Total Excess: 0.2150 (AC-FT)	Date/Time of Peak Discharge : 02Jul2020, 00:30 Total Direct Runoff : 0.2150 (AC-FT) Total Baseflow : 0.0000 (AC-FT) Discharge : 0.2150 (AC-FT)							

E Summary Result	s for Subbasin "F1	3"	
	Proj	ect: CCH EWS	
	Simulation Run:	25 YR 1 HR Subbasin: F1	3
Start of Run:	01Jul2020, 12:00	Basin Model:	WS F
End of Run: Compute Time	02Jul2020, 12:00 : 15Sep2016, 09:56	Meteorologic Model 45 Control Specification	: 25yr 1hr 20 Inch ns: 1 Hour
	Volume Un	its: 🔿 IN 🙆 AC-FT	
Computed Results			
Peak Discharge :	0.43 (CFS)	Date/Time of Peak Disch	arge : 01Jul2020, 13:01
Total Precipitation	1:0.1499 (AC-FT)	Total Direct Runoff :	0.0304 (AC-FT)
Total Loce +	0.TTAD (WC-LL)	Total basenow .	0.0000 (AC-FT)

COUNTRY CLUB HEIGHTS ECP

Summary Results for Subbasin "WS A ROW"

Project: CCH EWS

Simulation Run: 25 YR 1 HR Subbasin: WS A ROW

Start of Run:01Jul2020, 12:00End of Run:02Jul2020, 12:00Compute Time:15Sep2016, 15:17:01

Basin Model:WS A ROWMeteorologic Model:25yr 1hr 25 InchControl Specifications:1 Hour

Volume Units: 🔘 IN 🧿 AC-FT

Computed Results

 Peak Discharge :
 0.99 (CFS)
 Date/Time of Peak Discharge :
 01Jul2020, 12:41

 Total Precipitation :
 0.0415 (AC-FT)
 Total Direct Runoff :
 0.0415 (AC-FT)

 Total Loss :
 0.0000 (AC-FT)
 Total Baseflow :
 0.0000 (AC-FT)

 Total Excess :
 0.0415 (AC-FT)
 Discharge :
 0.0415 (AC-FT)

- WS A ROW RUN:25 YR 1 HR FLOW

🖽 Summary Results for Subbasin "W	S B ROW"
Proje	ct: CCH EWS
Simulation Run: 25 Y	'R 1 HR Subbasin: WS B ROW
Start of Run: 01Jul2020, 12:00 End of Run: 02Jul2020, 12:00 Compute Time: 15Sep2016, 15:15:	Basin Model: WS B ROW Meteorologic Model: 25yr 1hr 23 Inch 52 Control Specifications: 1 Hour
Volume Unit	ts: 🔘 IN 🧿 AC-FT
Computed Results	
Peak Discharge: 3.58 (CFS) Total Precipitation: 0.1491 (AC-FT) Total Loss: 0.0000 (AC-FT) Total Excess: 0.1491 (AC-FT)	Date/Time of Peak Discharge : 01Jul2020, 12:41Total Direct Runoff :0.1491 (AC-FT)Total Baseflow :0.0000 (AC-FT)Discharge :0.1491 (AC-FT)

COUNTRY CLUB HEIGHTS ECP

Summary Results for Subbasin "W	S C ROW"										
Proje	ct: CCH EWS										
Simulation Run: 25 Y	Simulation Run: 25 YR 1 HR Subbasin: WS C ROW										
Start of Run: 01Jul2020, 12:00 End of Run: 02Jul2020, 12:00 Compute Time: 15Sep2016, 15:14:	Basin Model: Meteorologic Model: 43 Control Specifications:	WS C ROW 25yr 1hr 21 Inch 1 Hour									
Volume Uni	ts: 🔘 IN 🧿 AC-FT										
Computed Results											
Peak Discharge: 1.46 (CFS) Total Precipitation: 0.0606 (AC-FT) Total Loss: 0.0000 (AC-FT) Total Excess: 0.0606 (AC-FT)	Date/Time of Peak Discharg Total Direct Runoff : Total Baseflow : Discharge :	e : 01Jul2020, 12:41 0.0606 (AC-FT) 0.0000 (AC-FT) 0.0606 (AC-FT)									

.

COUNTRY CLUB HEIGHTS ECP

Summary Results	for Subbasin "WS	SDF	NOM.							
Project: CCH EWS										
S	Simulation Run: 25 YR 1 HR Subbasin: WS D ROW									
Start of Run: End of Run: Compute Time:	01Jul2020, 12:00 02Jul2020, 12:00 15Sep2016, 15:12:3	38	Basin Model: Meteorologic Model: Control Specifications:	WS D ROW 25yr 1hr 20 Inch 1 Hour						
	Volume Unit	s: 🤇) IN 🧿 AC-FT							
Computed Results										
Peak Discharge : Total Precipitation Total Loss : Total Excess :	11.17 (CFS) : 0.4639 (AC-FT) 0.0000 (AC-FT) 0.4639 (AC-FT)	Date Tota Tota Disc	e/Time of Peak Discharg al Direct Runoff : al Baseflow : harge :	je : 01Jul2020, 12:41 0.4639 (AC-FT) 0.0000 (AC-FT) 0.4639 (AC-FT)						

.

.

WS D ROW RUN:25 YR 1 HR FLOW

Summary Results for Subbasin "W	SEROW"								
Project: CCH EWS									
Simulation Run: 25 Y	(R 1 HR Subbasin: WS E ROW								
Start of Run: 01Jul2020, 12:00 End of Run: 02Jul2020, 12:00 Compute Time: 15Sep2016, 15:11:	Basin Model: WS E ROW Meteorologic Model: 25yr 1hr 20 Inch 33 Control Specifications: 1 Hour								
Volume Uni	its: 🔘 IN 🧕 AC-FT								
Computed Results									
Peak Discharge: 2.91 (CFS) Total Precipitation: 0.1210 (AC-FT) Total Loss: 0.0000 (AC-FT) Total Excess: 0.1210 (AC-FT)	Date/Time of Peak Discharge : 01Jul2020, 12:41Total Direct Runoff :0.1210 (AC-FT)Total Baseflow :0.0000 (AC-FT)Discharge :0.1210 (AC-FT)								

.

E Summary Results for Subbasin "W	S F ROW"							
Project: CCH EWS								
Simulation Run: 25 Y	'R 1 HR Subbasin: WS F ROW							
Start of Run: 01Jul2020, 12:00 End of Run: 02Jul2020, 12:00 Compute Time: 15Sep2016, 15:07:4	Basin Model: WS F ROW Meteorologic Model: 25yr 1hr 20 Inch 48 Control Specifications: 1 Hour							
Volume Uni	ts: 🔘 IN 🙆 AC-FT							
Computed Results								
Peak Discharge : 5.77 (CFS) Total Precipitation : 0.2396 (AC-FT) Total Loss : 0.0000 (AC-FT) Total Excess : 0.2396 (AC-FT)	Date/Time of Peak Discharge : 01Jul2020, 12:41 Total Direct Runoff : 0.2396 (AC-FT) Total Baseflow : 0.0000 (AC-FT) Discharge : 0.2396 (AC-FT)							

COUNTRY CLUB HEIGHTS ECP

- WS F ROW RUN:25 YR 1 HR FLOW

<u>Appendix B</u>

HYDROLOGY AND HYDRAULICS

HYDRAULIC RESULTS (Existing Conditions)

EWS CCH RAT WS A-C.xls Pipe Calculations

WS A										
Pipe ID	Size & Material	Dia	n	Slope*10 0	S	А	R	Q	Qpeak (25yr1Hr)	% of Capacity
Pipe 1508	18" CMP	1.50	0.024	2.29%	0.0229	1.767146	0.375	8.6	3.2	37%

WS B

Pipe ID	Size & Material	Dia	n	Slope*10 0	S	A	R	Q	Qpeak (25yr1Hr)	% of Capacity
Pipe 1504	18" CMP	1.50	0.024	1.29%	0.0129	1.767146	0.375	6.5	0.5	8%
Pipe 1505	18" CMP	1.50	0.024	1.34%	0.0134	1.767146	0.375	6.6	0.5	8%
Pipe 1496	18" CMP	1.50	0.024	0.20%	0.0020	1.767146	0.375	2.6	2.4	92%
Pipe 1499	21" CMP	1.75	0.024	3.00%	0.0300	2.405282	0.4375	14.9	3.4	23%
Pipe 1494	18" CMP	1.50	0.024	3.44%	0.0344	1.767146	0.375	10.6	1.8	17%
Pipe 1495	18" CMP	1.50	0.024	13.15%	0.1315	1.767146	0.375	20.7	1.5	7%

WS C

Pipe ID	Size & Material	Dia	n	Slope*10 0	S	А	R	Q	Qpeak (25yr1Hr)	% of Capacity
Pipe 1489/1490	18" CMP	1.50	0.024	25.45%	0.2545	1.767146	0.375	28.8	2.0	7%
Pipe 1491	18" CMP	1.50	0.024	14.92%	0.1492	1.767146	0.375	22.0	1.9	9%
Pipe 1492/1493	18" CMP	1.50	0.024	6.61%	0.0661	1.767146	0.375	14.7	2.4	16%
Pipe1483	18" CMP	1.50	0.024	17.46%	0.1746	1.767146	0.375	23.8	1.1	5%
Pipe1484	18" CMP	1.50	0.024	2.00%	0.0200	1.767146	0.375	8.1	1.1	14%
Pipe 1485/1486	18" CMP	1.50	0.024	15.41%	0.1541	1.767146	0.375	22.4	1.4	6%
Pipe 1487	18" CMP	1.50	0.024	2.08%	0.0208	1.767146	0.375	8.2	5.3	64%

EWS CCH RAT WS D.xls Pipe Calculations

Pipe ID	Size & Material	Dia	n	Slope*10 0	S	А	R	Q	Qpeak (25yr1Hr)	% of Capacity
Pipe 1337	18" CMP	1.50	0.024	3.15%	0.0315	1.767146	0.375	10.1	1.6	15%
Pipe 1410/1411	18" CMP	1.50	0.024	17.67%	0.1767	1.767146	0.375	24.0	1.3	5%
Pipe 1389/1390	18" CMP	1.50	0.024	14.59%	0.1459	1.767146	0.375	21.8	2.0	9%
Pipe 1380	15" CMP	1.25	0.024	3.48%	0.0348	1.227185	0.3125	6.5	3.0	46%
Pipe 1366	18" CMP	1.50	0.024	1.47%	0.0147	1.767146	0.375	6.9	0.3	4%
Pipe 1365	12" CMP	1.00	0.024	5.08%	0.0508	0.785398	0.25	4.4	0.5	12%
Pipe 1367	18" CMP	1.50	0.024	1.50%	0.0150	1.767146	0.375	7.0	1.8	25%
Pipe 1379A	18" CMP	1.50	0.024	5.17%	0.0517	1.767146	0.375	13.0	3.4	26%
Pipe 1379B	18" CMP	1.50	0.024	8.00%	0.0800	1.767146	0.375	16.1	6.1	38%
Pipe 1376	18" CMP	1.50	0.024	0.15%	0.0015	1.767146	0.375	2.2	7.5	337%
Pipe 1371	18" CMP	1.50	0.024	4.00%	0.0400	1.767146	0.375	11.4	2.3	20%
Pipe 1375	15"x21" ACMP	1.50	0.024	0.45%	0.0045	1.767146	0.375	3.8	9.0	234%
Pipe 1364	12" CMP	1.00	0.024	4.09%	0.0409	0.785398	0.25	3.9	0.9	23%
Pipe 1363	18" CMP	1.50	0.024	5.80%	0.0580	1.767146	0.375	13.7	0.8	6%
Pipe 1368	12" CMP	1.00	0.024	6.06%	0.0606	0.785398	0.25	4.8	2.4	50%
Pipe 1369	18" CMP	1.50	0.024	6.87%	0.0687	1.767146	0.375	15.0	2.8	19%
Pipe 1370	13"x17" ACMP	1.25	0.024	5.20%	0.0520	1.227185	0.3125	8.0	2.9	36%
Pipe 1372	24" CMP	2.00	0.024	3.79%	0.0379	3.141593	0.5	23.9	3.5	15%

EWS CCH RAT WS E-F.xls Pipe Calculations

WS E										
Pipe ID	Size & Material	Dia	n	Slope*10 0	S	A	R	Q	Qpeak (25yr1Hr)	% of Capacity
Pipe 2638	18" CMP	1.50	0.024	2.77%	0.0277	1.767146	0.375	9.5	0.7	8%
Pipe 2639	18" HDPE	1.50	0.012	2.85%	0.0285	1.767146	0.375	19.2	1.2	6%
Pipe 1362	15" CMP	1.25	0.024	1.67%	0.0167	1.227185	0.3125	4.5	0.4	10%
Pipe 1360	21" HDPE	1.75	0.012	4.15%	0.0415	2.405282	0.4375	35.1	1.8	5%
Pipe 2640	12" CMP	1.00	0.024	4.09%	0.0409	0.785398	0.25	3.9	2.5	63%
Pipe 1358	24" CMP	2.00	0.024	1.97%	0.0197	3.141593	0.5	17.2	2.8	16%

WS F

Pipe ID	Size & Material	Dia	n	Slope*10 0	S	A	R	Q	Qpeak (25yr1Hr)	% of Capacity
Pipe 1387	18" CMP	1.50	0.024	0.02%	0.0002	1.767146	0.375	0.8	0.6	80%
Pipe 1391	21" CMP	1.75	0.024	2.19%	0.0219	2.405282	0.4375	12.7	1.6	13%
Pipe 1392	21" CMP	1.75	0.024	2.93%	0.0293	2.405282	0.4375	14.7	1.8	12%
Pipe 1393	21" CMP	1.75	0.024	11.03%	0.1103	2.405282	0.4375	28.6	1.9	7%
Pipe 1394	21" CMP	1.75	0.024	8.73%	0.0873	2.405282	0.4375	25.4	1.9	7%
Pipe 1395	21" CMP	1.75	0.024	9.04%	0.0904	2.405282	0.4375	25.9	2.0	8%
Pipe 1396	24" CMP	2.00	0.024	7.16%	0.0716	3.141593	0.5	32.9	2.5	8%
Pipe 1397	24" CMP	2.00	0.024	0.33%	0.0033	3.141593	0.5	7.1	2.5	35%
Pipe 1382	18" CMP	1.50	0.024	1.07%	0.0107	1.767146	0.375	5.9	0.7	12%
Pipe 1383	21" CMP	1.75	0.024	1.31%	0.0131	2.405282	0.4375	9.8	0.9	10%
Pipe 1385/1398	24" CMP	2.00	0.024	21.43%	0.2143	3.141593	0.5	56.9	3.2	6%
Pipe 1399/1400	30" CMP	2.50	0.024	10.63%	0.1063	4.908739	0.625	72.6	4.4	6%
Pipe 1361	12" CMP	1.00	0.024	6.18%	0.0618	0.785398	0.25	4.8	0.5	11%

Appendix C

BMP TOOLBOX

ROCK-LINED CHANNEL

CATEGORY: <mark>SC</mark>, HD, <mark>T</mark>

	accription		Field Photo:
A i su Th is o	ock-lined channel is a shallor face to convey runoff, stabili: e rock-lined channel also allo conveyed by the channel.	w, rock-lined depression in the earth's ze the soil and slow water velocities. ws for the infiltration of runoff as flow	
ls.	sues and Concerns:		
Ма	intenance:		
	Periodic inspection fo	r side slope stability, debris and	
	sediment accumulation	on.	
Ac	lvantages:		
	Slows velocities, mini	mizing erosion, stabilize soils and	A PART STARLES SAL
	reduce sediment ente	ering runoff.	
D i	Allows for inflitration of a seducentariase in the seducentar	or runon and precipitation.	The stand of the stand
Di	Not suitable as a prim collection of trapped	nary sediment trapping device since debris may be difficult	
Go	bals	Objectives	Key Design Considerations:
1.	Reduce the amount of coarse, fine and very fine	Stabilize eroding channels/ditches in order to reduce the coarse, fine and	 Designer should take into account runoff volume and flow velocities.
	sediment from runoff by 33% or to the Maximum Extent Practicable.	very fine sediment in runoff.	 Rock-lined channels should not to be used over clayey soils without a filter fabric beneath rock.
2.	Reduce the storm water	Infiltrate a portion of the 25-year, 1-	3. Designer should utilize the Manning's Equation to design channel dimensions.
	runoff volume from the 25-year, 1-hour event by	hour storm water volume.	 Consider site conditions when establishing freeboard for design flow rates.
	Extent Practicable.		5. Use angular rock rather than rounded or subrounded rock.
3.	Reduce the peak flow from the 25-year, 1-hour event by 33% or to the Maximum Extent Practicable.	Reduce the peak discharge of the 25-year, 1-hour storm by infiltrating a portion of the runoff volume.	<u>CADD Detail:</u> (over)
<u>Co</u>	ost Analysis (Based on 20 inches/vear mean annua	010-2015 proposed bid costs and	
<u>22</u>	timeted Deciser Life: 20	vooro	
	ounialeu Design Life: 30	years	
		000/LF	
	ost to Provide Source Co	Jumo: \$0.90/10	
	ost to Reduce Runoll Vo	nume: \$0.04/11	
		an, φ120.00/615	
	ost to Reduce Sediment:	φ 3.80/ID	

ROCK-LINED CHANNEL

NOTES:

- "Y" DEPICTS MIN REQ'D DEPTH OF CHANNEL. FINISHED TOP WIDTH AND SIDE SLOPE HEIGHT MAY VARY DEPENDING ON EXISTING TERRAIN.
- 2. SEE SPECIAL PROVISIONS FOR SUBGRADE COMPACTION REQUIREMENTS.

ROCK DISSIPATOR

CATEGORY: SC, HD, T

D A or roc <u>Is</u> Ma	escription: rock dissipator is a rock-lined at a location where dissipatio ck dissipator also allows for th sues and Concerns: aintenance: Periodic inspection fo accumulation	apron at the inlet and outlet of a pipe on of runoff velocity is necessary. The ne infiltration of runoff.				
Ac Di	 Ivantages: Slows velocities, mini reduce sediment ente Allows for infiltration of sadvantages: Not suitable as a prim collection of trapped 	mizing erosion, stabilize soils and ering runoff. of runoff and precipitation. nary sediment trapping device since debris may be difficult.				
G	bals	Objectives	Key Design Considerations:			
1.	Reduce the amount of coarse, fine and very fine sediment from runoff by 33% or to the Maximum Extent Practicable.	Stabilize eroding channels/ditches in order to reduce the coarse, fine and very fine sediment in runoff.	 Designer should take into account runoff volume and flow velocities. Rock dissipators should not to be used over clayey soils without a filter fabric beneath rock. Consider site conditions when establishing side slopes. 			
2.	Reduce the storm water runoff volume from the 25-year, 1-hour event by 33% or to the Maximum Extent Practicable.	Infiltrate a portion of the 25-year, 1- hour storm water volume.	4. Use angular rock rather than round rock.			
3.	Reduce the peak flow from the 25-year, 1-hour event by 33% or to the Maximum Extent Practicable.	Reduce the peak discharge of the 25-year, 1-hour storm by infiltrating a portion of the runoff volume.	<u>CADD Detail:</u> N/A			
<u>Co</u> 22	ost Analysis (Based on 20 hinches/year mean annua	010-2015 proposed bid costs and I rainfall):				
Es	stimated Design Life: 30	years				
R	OM Construction Cost: \$	\$22/SF				
C	ost to Provide Source Co	ontrol: \$0.73/ft ²				
C	ost to Reduce Runoff Vo	lume: \$0.03/ft ³				
C	ost to Reduce Runoff Pe	ak: \$96.00/cfs				
C	ost to Reduce Sediment:	: \$2.85/Ib				

SEED AND BLANKET CHANNEL

CATEGORY: SC, HD, T

ח	escription:		Field Photo:
A son go ea bla be	seed and blanket channel is in the vegetation is establish the, the channel is a shallow, th's surface to convey runoff nket channel also allows for ng conveyed.	dentical to a grass-lined swale in that ed and the biodegradable blanket is vegetation-lined depression in the and stabilize the soil. The seed and the infiltration of runoff as flow is	Tield Photo.
<u> Is</u>	sues and Concerns:		
Ма	intenance:		
	Periodic inspection fo sediment accumulation	r side slope stability, debris and on.	
٨	Periodic mowing.		
Л	 Minimize erosion, sta entering runoff. 	bilize soils, and reduce sediment	
	Allows for infiltration of	of runoff and precipitation.	
Di	sadvantages:		
	 Not suitable for dry lo 	cations.	
	Not suitable for high v	velocities.	
G	bals	Objectives	Key Design Considerations:
1.	Reduce the amount of coarse, fine and very fine sediment from runoff by 33% or to the Maximum	Stabilize eroding channels/ditches in order to reduce the coarse, fine and very fine sediment in runoff.	 Designer should take into account runoff volume and flow velocities. Designer should utilize the Manning's Equation to design channel dimensions.
	Extent Practicable.		3. Consider site conditions when establishing freeboard for
2.	Reduce the storm water runoff volume from the 25-year, 1-hour event by 33% or to the Maximum Extent Practicable.	Infiltrate a portion of the 25-year 1- hour storm water volume.	design flow rates.
3.	Reduce the peak flow from the 25-year, 1-hour event by 33% or to the Maximum Extent Practicable.	Reduce the peak discharge of the 25-year 1-hour storm by infiltrating a portion of the runoff volume.	<u>CADD Detail:</u> (over)
<u>Co</u> 22	ost Analysis (Based on 20 inches/year mean annua	010-2015 proposed bid costs and I rainfall):	
Es	timated Design Life: 30	years	
R	DM Construction Cost: \$	551/LF	
Co	ost to Provide Source Co	ontrol: \$0.57/ft	
С	ost to Reduce Runoff Vo	lume: \$0.02/ft ³	
С	ost to Reduce Runoff Pe	ak: \$74.18/cfs	
С	ost to Reduce Sediment:	: \$2.20/Ib	

CATEGORY: SC, HD, T

AGGREGATE BASE

CATEGORY: SC, HD

Description:		Field Photo:
Aggregate base is typ to stabilize shoulders the impervious road s provides a stable surf cinders. It can be use access roads that hav requirements.	vically used along the edges of the road in order and allow infiltration of runoff originating from urface including snowmelt. The aggregate base ace for the capture of sediment and road ed as a driving surface on non-county standard ve infrequent traffic and minimal snow removal	None Available
Issues and Conc	erns:	-
Maintenance:		
Periodic ins road.	pection of condition of aggregate along the	
 Routine swi paved trave 	eeping to remove dislodged aggregate from the el way and road cinder accumulation.	
 Occasional may season activities and 	regrading and recompaction of aggregate base hally be necessary depending on snow removal	Key Design Considerations:
Advantages:	id frost neave.	 Designer should take into account slope and super- elevation of the road and shoulder, runoff volume, and flow
Aggregate I	base allows infiltration directly adjacent to the	velocities.
road surfac the impervie Relatively lo	e near the source of runoff and sediment from ous surface. ow capital construction cost compared to curb	 The infiltration and treatment capacity of the aggregate base is dependent on the soil type, seasonal high groundwater table, slope of the road, and dimensions and
and gutter.	· · · · · · · · · · · · · · · · · · ·	slope of the road and shoulder.
 Stabilizes s roadside er Reduces the 	ediment along the road shoulders and reduces osion.	 Construction of the aggregate base should begin with the over-excavation of in situ soil adjacent to the road surface and replaced with 1" washed poorly graded angular gravel.
road surfac	e.	
Does not in corridor.	crease the urbanization appearance of the road	<u>Detail:</u> None Available
Disadvantages. Does not pr	ovide a quide for snow removal activities	
 (however the definition of the defi	is can be mitigated with snow stakes). esign life the voids between the aggregate could	
 Difficult to r 	ment. ecover trapped sediment.	
Goals	Objectives	-
Reduce the amou	Int of Stabilize eroding channels/ditches in	-
coarse, fine and v sediment from rui 33% or to the Ma Extent Practicable	very fine noff by ximum e.	
2. Reduce the storm runoff volume from 25-year, 1-hour e 33% or to the Ma Extent Practicable	n water Infiltrate a portion of the 25-year, 1- hour storm water volume. vent by ximum e.	
3. Reduce the peak from the 25-year, event by 33% or t Maximum Extent Practicable.	flow Reduce the peak discharge of the 25-year, 1-hour storm by infiltrating a portion of the runoff volume.	
<u>Cost Analy</u> sis (Bas	ed on 2010-2015 proposed bid costs and	4
22 inches/year mea	an annual rainfall):	
Estimated Design	Life: 15 years	
ROM Construction	n Cost: \$5/SF	
Cost to Provide S	ource Control: \$0.33/ft ²	
Cost to Reduce R	unoff Volume: \$0.01/ft ³	
Cost to Reduce R	unoff Peak: \$43.64/cfs	
Cost to Reduce Se	ediment: \$1.29/lb	

REVEGETATION

CATEGORY: SC

Description:

Revegetation is the establishment of vegetation, both native and adapted, to control erosion with and without structural solutions. Vegetation is a natural soil stabilization technique and can be established in combination with other source controls such as mulches.

Issues and Concerns:

Maintenance:

 May require periodic re-treatment with seed, amendments, and/or mulch.

Advantages:

- Inexpensive
- Aesthetic
- Low maintenance
- Natural
- Self-sustaining

Disadvantages:

- May not be viable for all sites.
- May require some engineering solutions (toe protection, retaining walls) to reduce slope grade.
- Most effective on slopes with ratios of 3:1 and less.
- Does not resist snow removal activities.

G	oals	Objectives		
1.	Reduce the amount of coarse, fine and very fine sediment from runoff by 33% or to the Maximum Extent Practicable.	Stabilize eroding slopes in order to reduce the coarse, fine and very fine sediment in runoff.		
Cost Analysis (Based on 2010-2015 proposed bid costs and				

22 inches/year mean annual rainfall):

Estimated Design Life: 30 years

ROM Construction Cost: \$3/ft²

Cost to Provide Source Control: \$0.10/ft²

Cost to Reduce Runoff Volume: NA

Cost to Reduce Runoff Peak: NA

Cost to Reduce Sediment: NA

ROCK SLOPE PROTECTION

CATEGORY: SC

<u> </u>	Field Photo:
Rock slope protection is the installation of rock over an eroding sk or bare soil in order to stabilize and protect the site from further erosion. Rock slope protection can be placed directly onto the ba soil or a soil separation filter fabric can be placed beneath the rock	ppe e
Issues and Concerns:	
Maintenance:	
 Periodic inspection for slope stability, debris and sedime accumulation. 	ent and a second s
Advantages:	
 Stabilizes soil, minimizes erosion and sediment mobilization. 	
Allows for infiltration of precipitation and runoff.	The second second second second second second second second second second second second second second second se
Disadvantages:	
More expensive than revegetation.	
 In some situations rock slope protection is visually unappealing. 	
Goals Objectives	Key Design Considerations:
 Reduce the amount of coarse, fine and very fine sediment from runoff by 22% or to the Maximum Stabilize eroding slopes in order reduce the coarse, fine and very sediment in runoff. 	 Slope stability should be a consideration in the evaluation of placement of rock slope protection. Rock slope protection should not to be used over silt or clav
Extent Practicable.	unless suitable soil separation fabric is installed.
S3% of to the Maximum Extent Practicable. Cost Analysis (Based on 2010-2015 proposed bid costs 22 inches/year mean annual rainfall):	 unless suitable soil separation fabric is installed. 3. Use angular rock to improve interlocking characteristics to improve stability.
S3% of to the Maximum Extent Practicable. Cost Analysis (Based on 2010-2015 proposed bid costs 22 inches/year mean annual rainfall): Estimated Design Life: 30 years	 unless suitable soil separation fabric is installed. 3. Use angular rock to improve interlocking characteristics to improve stability.
S3% of to the Maximum Extent Practicable. Cost Analysis (Based on 2010-2015 proposed bid costs 22 inches/year mean annual rainfall): Estimated Design Life: 30 years ROM Construction Cost: \$17/ft ²	 unless suitable soil separation fabric is installed. 3. Use angular rock to improve interlocking characteristics to improve stability.
S3% of to the Maximum Extent Practicable. Cost Analysis (Based on 2010-2015 proposed bid costs 22 inches/year mean annual rainfall): Estimated Design Life: 30 years ROM Construction Cost: \$17/ft ² Cost to Provide Source Control: \$0.57/ft ²	 unless suitable soil separation fabric is installed. 3. Use angular rock to improve interlocking characteristics to improve stability.
S3 % of to the Maximum Extent Practicable. Cost Analysis (Based on 2010-2015 proposed bid costs 22 inches/year mean annual rainfall): Estimated Design Life: 30 years ROM Construction Cost: \$17/ft² Cost to Provide Source Control: \$0.57/ft² Cost to Reduce Runoff Volume: NA	 unless suitable soil separation fabric is installed. 3. Use angular rock to improve interlocking characteristics to improve stability.
S3% of to the Maximum Extent Practicable. Cost Analysis (Based on 2010-2015 proposed bid costs 22 inches/year mean annual rainfall): Estimated Design Life: 30 years ROM Construction Cost: \$17/ft ² Cost to Provide Source Control: \$0.57/ft ² Cost to Reduce Runoff Volume: NA Cost to Reduce Runoff Peak: NA	 unless suitable soil separation fabric is installed. 3. Use angular rock to improve interlocking characteristics to improve stability.

SEDIMENT BASIN

CATEGORIES: HD, T

Description:

Sediment basins are impoundments that collect storm water runoff. The basin captures and detains the first flush of each storm and once the basin is at capacity the additional flow is bypassed. The basin removes floatable debris, coarse, fine, and very fine suspended solids when operating in a first flush configuration. Pollutant removal is achieved primarily through settling of sediments and particulate forms of pollutants. If sufficient separation between the bottom of the basin and the groundwater table is available, there is also some reduction in nutrients as the storm water infiltrates into the ground.

Issues and Concerns:

Maintenance:

 Regular inspections for standing water, side slope stability, debris and sediment accumulation, and vegetation height and vegetative cover.

Advantages:

- Basins have good constituent removal for suspended solids, and total metals particularly when operated for a first flush treatment.
- Compared to other treatment BMPs, basins are relatively easy to operate and maintain.
- Infiltration enhances reduction of pollutant load.
- Relatively low cost of achieving project objectives.

Disadvantages:

- Can only be constructed in areas with sufficient hydraulic head and area.
- Should not be placed in areas where groundwater contamination is a concern.

A A A A A A A A A A A A A A A A A A A	And a state of the	and the second second
	NSVP ADD ADD	and the second second
The second second second second second second second second second second second second second second second se	And the second sec	Section of the
		COLUMN DE LA COLUMN
		CT IN THE REAL PROPERTY
		The state of the second
		A CONTRACTOR
	and the second s	A CONTRACTOR
WILL COMPANY OF THE OWNER		
A CONTRACTOR OF A CONTRACTOR OF		
	and the second sec	Service Prove
	the second second second second second second second second second second second second second second second s	- T- CARLES
	La Cal harden	C. MARCON THE
		COLUMN AND ADDRESS
		民族和自己的
	and the second se	and strength and
		A A A A A A A A A A A A A A A A A A A
	AND A REAL PROPERTY OF A REAL PROPERTY OF	and management of the
	S Town of the second second second second second second second second second second second second second second	A States
	The second second	AND STRATES
		A COLORED
		The second second
	a to an an an an an an an an an an an an an	CO CRAME TO
	A CALLER OF THE STATE	
	A manufacture of the second se	A STATE OF STATE
	A CARDINA AND A CARDINA AND A CARDINA	CHARLES AND THE

Key Design Considerations:

Field Photo:

- 1. Locate, size, and shape basins relative to topography to maximize use of available space and enhance appearance.
- 2. Regardless of basin size or flow criteria, the basin should be designed to capture and treat the first flush of a storm event and bypass the remaining flow once the system has reached capacity.
- 3. Basin should percolate stormwater within 72 hours.
- 4. Space requirements are relatively high for basins.
- 5. Should not be sited where there may be insufficient hydraulic head to facilitate complete drainage, or in areas, where groundwater contamination is a concern.

ROM Construction Cost: \$42/ ft²

Cost to Provide Source Control: NA

Cost to Reduce Runoff Volume: \$0.02/ft³

Cost to Reduce Runoff Peak: \$83.27/cfs

Cost to Reduce Sediment: \$2.09/lb

CATEGORIES: HD,

Description:

CSP Inlets are depressions in the ground that temporarily detain runoff allowing sediment and other debris to settle out of suspension from runoff. Infiltration is achieved through an open area in the foundation.

Issues and Concerns:

Maintenance:

- Annual inspection of structure's integrity and condition of channel.
- Annual vactoring necessary to remove sediment accumulation.

Advantages:

- CSP inlets require less area compared to other treatment BMP's.
- Requires little or no hydraulic head to operate.
- Ease of construction.

Disadvantages:

- Minimal volume, peak or pollutant load reduction.
- Vector control issues may persist if water remains inside.
- Re-suspended sediment under heavy flows if not installed for first flush treatment.
- Primarily treats coarse sediment when not operated in a first flush configuration.
- Potential traps for small animals.
- Can be considered unattractive.

Field Photo:
Key Design Considerations:

- 1. Designer should take into account runoff volume and consider trapping capabilities, i.e. install in series, add baffles, or install for first flush treatment.
- 2. Soil type, soil conditions, groundwater depth, existing utilities, and excavation limitations need to be investigated prior to designing the CSP inlet.
- 3. Designer should consider the various alternatives for cover types, e.g., hinged lid, grate, trash rack, and window opening to allow for efficient and safe removal of sediment from the CSP inlet.

CADD Detail:

(over)

1. Reduce the amount of coarse, fine and very fine sediment from runoff by 33% or to the Maximum Extent Practicable.	Provide regional treatment of coarse, fine and very fine sediment in runoff.			
2. Reduce the storm water runoff volume from the 25- year, 1-hour event by 33% or to the Maximum Extent Practicable.	Capture and store a portion of the 25-year, 1-hour storm water volume.			
3. Reduce the peak flow from the 25-year, 1-hour event by 33% or to the Maximum Extent Practicable.	Reduce the peak discharge of the 25-year, 1-hour storm by detaining and infiltrating a portion of the runoff volume.			
Cost Analysis (Based on 2010-2015 proposed bid costs and				

Estimated Design Life: 30 years

ROM Construction Cost: \$4,500/EA

Cost to Provide Source Control: NA

Cost to Reduce Runoff Volume: \$0.23/ft³

Cost to Reduce Runoff Peak: \$2,779/cfs

Cost to Reduce Sediment: \$24.25/lb

NOTE: SEE SPECIAL PROVISIONS FOR SUBGRADE COMPACTION REQUIREMENTS.

<u>Appendix D</u>

ALTERNATIVE ROM CONSTRUCTION COST ESTIMATES

COUNTRY CLUB HEIGHTS ECP PRELIMINARY CONSTRUCTION COST ESTIMATE ALTERNATE 1

ITEM NO.	ITEM DESCRIPTION	ESTIMATED QUANTITY	UNIT OF MEASURE	UNIT PRICE (in Figures)		ITEM TOTAL (in Figures)	
1	Mobilization	1	LS	\$	45,000	\$	45,000.00
2	Traffic Control	1	LS	\$	20,000	\$	20,000.00
3	Sweeping	35	DAY	\$ 500		\$	17,500.00
4	Trench and Excavation Safety	1	LS	\$ 7,000		\$	7,000.00
5	Install & Maintain Temporary BMPs	1	LS	\$ 20,000			20,000.00
6	Remove and Dispose of CMP Inlets	9	EA	\$	1,100	\$	9,900.00
7	Remove and Dispose of CMP	400	LF	\$ 45		\$	18,000.00
8	CMP Inlet	23	EA	\$ 4,500		\$	103,500.00
9	18" HDPE Pipe	460	LF	\$ 110		\$	50,600.00
10	Sediment Basin	1	EA	\$	17,000	\$	17,000.00
11	AC Swale R&R	1,270	LF	\$	87	\$	110,490.00
12	AC Pavement R&R	700	SF	\$	12	\$	8,400.00
13	Rock-Lined Channel	670	LF	\$	88	\$	58,960.00
14	Seed and Blanket Channel	1,650	LF	\$	51	\$	84,150.00
15	Gunite Slope Protection R&R	1	EA	\$ 80,000		\$	80,000.00
16	Rock Slope Protection		SF	\$	17	\$	316,200.00
17	Rock Bowl/Dissipator	400	SF	\$	13	\$	5,200.00
18	AB Shoulder Stabilization	2,410	SF	\$	5	\$	12,050.00
19	Misc Grading	5	CY	\$	88	\$	440.00
20	Revegetation (Basin)	1	EA	\$	3,000	\$	3,000.00
21	Revegetation (General)	6,000	SF	\$	3	\$	18,000.00
22	CCCs	1	LS	\$	6,000	\$	6,000.00
23	Project Sign	1	EA	\$	2,000	\$	2,000.00
TOTAL \$ 1.013.390.0						013,390.00	
20% CONTINGENCY \$ 202,680.00						202,680.00	
GRAND TOTAL \$ 1,216,070.00							

COUNTRY CLUB HEIGHTS ECP PRELIMINARY CONSTRUCTION COST ESTIMATE ALTERNATE 2

ITEM NO.	ITEM DESCRIPTION	ESTIMATED QUANTITY	UNIT OF MEASURE	UNIT PRICE (in Figures)		ITEM TOTAL (in Figures)	
1	Mobilization	1	LS	\$	35,000	\$	35,000.00
2	Traffic Control	1	LS	\$	20,000	\$	20,000.00
3	Sweeping	25	DAY	\$ 500		\$	12,500.00
4	Trench and Excavation Safety	1	LS	\$ 7,000		\$	7,000.00
5	Install & Maintain Temporary BMPs	1	LS	\$ 16,000			16,000.00
6	Remove and Dispose of CMP Inlets		EA	\$ 1,100 \$			-
7	Remove and Dispose of CMP	245	LF	\$ 45 \$ 11,		11,025.00	
8	CMP Inlet	6	EA	\$ 4,500		\$	27,000.00
9	18" HDPE Pipe	245	LF	\$ 110 \$		\$	26,950.00
10	Sediment Basin	1	EA	\$ 17,000 \$ 17,		17,000.00	
11	AC Swale R&R	145	LF	\$	87	\$	12,615.00
12	AC Pavement R&R	700	SF	\$	\$ 12 \$ 8,400		8,400.00
13	Rock-Lined Channel		LF	\$	\$88\$		-
14	Seed and Blanket Channel	1,350	LF	\$	\$51 \$68,850.		68,850.00
15	Gunite Slope Protection R&R	1	EA	\$ 80,000		\$	80,000.00
16	Rock Slope Protection	12,400	SF	\$ 17		\$	210,800.00
17	Rock Bowl/Dissipator	350	SF	\$	13	\$	4,550.00
18	AB Shoulder Stabilization	710 SF \$		5	\$	3,550.00	
19	Misc Grading	5	CY	\$	88	\$	440.00
20	Revegetation (Basin)	1	EA	\$	3,000	\$	3,000.00
21	Revegetation (General)	4,000	SF	\$	3	\$	12,000.00
22	CCCs	1	LS	\$	4,200	\$	4,200.00
23	Project Sign	1	EA	\$	2,000	\$	2,000.00
TOTAL \$ 582.880.00							582,880.00
20% CONTINGENCY \$ 116.580.0						116,580.00	
GRAND TOTAL \$ 699,460.00							

<u>Appendix E</u>

CORRESPONDENCE

COMMUNITY DEVELOPMENT AGENCY

TRANSPORTATION DIVISION

http://www.edcgov.us/DOT/

PLACERVILLE OFFICES: MAIN OFFICE: 2850 Fairlane Court, Placerville, CA 95667 (530) 621-5900 / (530) 626-0387 Fax

MAINTENANCE: 2441 Headington Road, Placerville, CA 95667 (530) 642-4909 / (530) 642-0508 Fax LAKE TAHOE OFFICES:

ENGINEERING: 924 B Emerald Bay Road, South Lake Tahoe, CA 96150 (530) 573-7900 / (530) 541-7049 Fax

MAINTENANCE: 1121 Shakori Drive, South Lake Tahoe, CA 96150 (530) 573-3180 / (530) 577-8402 Fax

October 25, 2016

To Whom It May Concern:

The Tahoe Engineering Unit of the County of El Dorado Community Development Agency, Transportation Division invites you to attend a public meeting for the Evaluating Alternatives Phase of the Country Club Heights Erosion Control Project (Project). The Tahoe Engineering Unit has gathered and analyzed existing conditions information and developed and compared alternatives for the Project. The results of this study have been combined into a Draft Feasibility Report. The purpose of this meeting is to present this information for public comment. Following this meeting, the analysis will be further refined.

COUNTRY CLUB HEIGHTS EROSION CONTROL PROJECT <u>PUBLIC MEETING</u>

Transportation Division's Tahoe Engineering Office 924 B Emerald Bay Road South Lake Tahoe, California

> Thursday, November 10, 2016 5:00 p.m. to 7:00 p.m.

The public meeting will begin with a brief informational presentation followed by a question and answer period. Attendees will have an opportunity to share opinions and concerns regarding the Project (orally and/or in writing).

A map of the Project Area and comment form are enclosed. A copy of the draft report is available on the County project site at:

http://www.edcgov.us/DOT/TahoeEngineering/CCH_ECP.aspx

Please use the comment sheet provided and bring it to the meeting or submit it to the following address: County of El Dorado Community Development Agency, Transportation Division – Tahoe Engineering Unit, 924 B Emerald Bay Road, South Lake Tahoe, CA 96150, Attn: Daniel Kikkert, **no** later than November 12, 2016. For more information, you may contact Daniel Kikkert at (530) 573-7914 or via email at dan.kikkert@edcgov.us.

Sincerely,

Daniel Kikkert, P.E. Senior Civil Engineer

. .

COMMUNITY DEVELOPMENT AGENCY

TRANSPORTATION DIVISION

http://www.edcgov.us/DOT/

PLACERVILLE OFFICES: MAIN OFFICE: 2850 Fairlane Court, Placerville, CA 95667 (530) 621-5900 / (530) 626-0387 Fax

MAINTENANCE: 2441 Headington Road, Placerville, CA 95667 (530) 642-4909 / (530) 642-0508 Fax LAKE TAHOE OFFICES:

ENGINEERING: 924 B Emerald Bay Road, South Lake Tahoe, CA 96150 (530) 573-7900 / (530) 541-7049 Fax

MAINTENANCE: 1121 Shakori Drive, South Lake Tahoe, CA 96150 (530) 573-3180 / (530) 577-8402 Fax

COUNTRY CLUB HEIGHTS EROSION CONTROL PROJECT

PUBLIC COMMENT SHEET

The County of El Dorado, Transportation Division - Tahoe Engineering Unit is currently in the planning process related to the development of water quality/erosion control improvements in the Country Club Heights Erosion Control Project (Project). This Project is funded in part by the United States Forest Service and the Tahoe Regional Planning Agency.

We invite you to participate in the planning process by providing feedback that will assist in the development of a preferred alternative for the Project. Please provide your comments or suggestions in the space provided below. All public comments must be received by November 12, 2016 to be considered for this phase of the Project. Thank you for your time in assisting our office with the planning of this important Project.

Name:
Tahoe Residence
Street Address:
Email Address:
Mailing Address:
Comments:

Country Club Heights Erosion Control Project - Public Comments During Development of Feasibility Report					
#	Date	Communication	Comment		
1	10/31/2016	Letter	Sent letter regarding ponding problem on Meadow Vale. Plugging of roadside ditch creates a ponding problem every winter. Also noted that the road conditions on Meadow Vale are "horrible". Person would rather see the roads repaired first.		
2	11/2/2016	Letter	Sent letter regarding hillside runoff (from above house) affecting their house and garage. Also commented on the "rebar-reinforced" cement walls throughout neighborhood. Would like to see cement walls removed and replaced with something stronger and more attractive.		
3	11/3/2016	Letter / Phone	Sent letter (and followed up with phone call) regarding the failing section of gunite on Meadow Vale Drive. Noted that "in paragraph 7.1 problem areas, the reference to figure 17 is noted. However in looking at the acturla figure the buckled gutine slope is not highlighted" (**Figure was checked and is noted to show problem area in questions near 1700 Meadow Vale). Noted "in pargraph 8.1 the alternatices propoes in-kind replacemt of gunite slope protection." Requests that County look into a more effectuve abd envuribnebtakkt fruedkt wat ti oritect slopes. Suggested (as a last resort) that this section of Meadow Vale be closed and the slope returned to it's orignal grade cul-de-sacs be created at either end of closed section.		
4	11/4/2016	Letter	Sent letter concerned about the overall cost of the project. Requested information on the current unfunded amount for the project and how that cost will be covered. Unable to make the meeting and wanted to know how the results of this meeting would be communicated to impacted homeowners not able to attend the meeting.		
5	10/31/2016	Phone	Called regarding problem in front of their home on Skyline Drive. Area in question is near 1668 Crystal Air Drive. Noticed that ponding occurs during storm events and the street is starting to crack. Also noticed settlement of their home when water ponds in the roadway has seen air bubbles coming to the surface.		
6	10/28/2016	Phone	Called in regards to the project. Had no issues to report, but wanted to know the background of the project. Also discussed County snow removal practices with respect to the use of salt and brine.		
7	10/17/2016	Phone	Called in regards to issue at the intersection of Elks Club and Skyline. The roadside ditch on the southeast side ponds, creating an icing hazzard in the winter as ponding comes out into the roadway.		
8	3/16/2016	Phone	Called our office regarding a potential problem of a plugged pipe near the intersection Apple Valley and Meadow Vale. Call was forwarded on to Maintenance.		
9					
10					
11					
12					
13					
14					
15					
10	1	1			

General Manager Richard H. Solbrig

South Tahoe Public Utility District

Directors Chris Cefalu James R. Jones Randy Vogelgesang Kelly Sheehan Duane Wallace

1275 Meadow Crest Drive • South Lake Tahoe • CA 96150-7401 Phone 530 544-6474 • Fax 530 541-0614 • www.stpud.us

October 27, 2016

County of El Dorado Community Development Agency, Transportation Division – Tahoe Engineering Unit 924 B Emerald Bay Road South Lake Tahoe, CA 96150 Attn: Daniel Kikkert, P.E.

Re: Country Club Heights Erosion Control Project Feasibility Report comments

Dear Mr. Kikkert,

Thank you for providing the District with the Draft Feasibility Report for the Country Club Heights Erosion Control Project. The District has reviewed the information in the report and offers the following comments with respect to potential water and sewer crossings.

- 1. Figure 9 of the draft report contains the utility map of the project area. Based on a preliminary review, this map appears to adequately characterize the water and sewer lines of the area. There are a couple of minor discrepancies (i.e. utilities shown that do not exist), but none that appear to affect any of the proposed work.
- 2. The District has a 15-foot wide sewer easement containing a 6" sewer line that straddles the property line between 1555 and 1559 Cherry Hills Circle. The District's easement is 10 feet on the 1555 Cherry Hills Circle property and 5 feet on the 1559 Cherry Hills Circle. This location appears to be exactly where the County is proposing to place a rock bowl and channel. The County will need to obtain approval from the District for any improvements located within this easement.
- 3. Some of the project work appears to be in close proximity to the District's 30-inch ductile iron pipe export force main. This force main runs through the project area on Glen Eagles Rd., Elks Club Dr., Tamoshanter Dr., and Meadow Vale Dr. This force main is a critical component of the District's treated wastewater disposal. This force main runs from the District's Wastewater Treatment Plant on Meadow Crest Drive to the Luther Pass Pump Station at the base of Luther Pass. If the pipe was damaged in any way, it is conceivable that the entire contents of the pipes could be spilled. Any project that will cross these force mains must contain a contingency plan to handle a potential breech of the force mains. District records indicate the 24 inch force main is steel pipe, while the 30 inch force main is ductile iron pipe.
- 4. Please let the District know at your earliest convenience of any potholing needed of our utilities. For sewer service locations, dipping the manholes in lieu of potholing may be sufficient to determine the location and elevation of sewer piping.

If you have any questions or concerns, please don't hesitate to call me at (530) 543-6202 (office) or (530) 902-1344 (mobile).

Sincerely,

Stephen M. Caswell

Stephen Caswell, P.E. Senior Engineer

COMMUNITY DEVELOPMENT AGENCY

TRANSPORTATION DIVISION

http://www.edcgov.us/DOT/

PLACERVILLE OFFICES: MAIN OFFICE: 2850 Fairlane Court, Placerville, CA 95667 (530) 621-5900 / (530) 626-0387 Fax

MAINTENANCE: 2441 Headington Road, Placerville, CA 95667 (530) 642-4909 / (530) 642-0508 Fax LAKE TAHOE OFFICES:

ENGINEERING: 924 B Emerald Bay Road, South Lake Tahoe, CA 96150 (530) 573-7900 / (530) 541-7049 Fax

MAINTENANCE: 1121 Shakori Drive, South Lake Tahoe, CA 96150 (530) 573-3180 / (530) 577-8402 Fax

November 8, 2016

Stephen Caswell, P.E. South Tahoe Public Utility District 1275 Meadow Crest Drive South Lake Tahoe, CA 96150-7401

Subject: Country Club Heights Erosion Control Project – Project Feasibility Report, Response to Comments

Dear Mr. Caswell,

Thank you for your response letter dated October 27, 2016, regarding the County of El Dorado (County), Community Development Agency - Transportation Division (CDA-TD) Country Club Heights Erosion Control Project (Project) – Project Feasibility Report (Report). We appreciate the South Tahoe Public Utility District (District) taking the time to review and provide comments on the document. Our responses to the comments submitted are as follows:

1. Figure 9 of the draft report contains the utility map of the project area. Based on a preliminary review, this map appears to adequately characterize the water and sewer lines of the area. There are a couple of minor discrepancies (i.e. utilities shown that do not exist), but none that appear to affect any of the proposed work.

Thank you for verification of the existing utility map. The County will provide a 65% plan set for review to ensure all identified sewer and water lines in areas of work are mapped correctly.

2. The District has a 15-foot wide sewer easement containing a 6" sewer line that straddles the property line between 1555 and 1559 Cherry Hills Circle. The District's easement is 10 feet on the 1555 Cherry Hills Circle property and 5 feet on the 1559 Cherry Hills Circle. This location appears to be exactly where the County is proposing to place a rock bowl and channel. The County will need to obtain approval from the District for any improvements located within this easement.

The County is re-evaluating this alternative based on the utility infrastructure and recently collected topographic data. If the County moves forward with this option, we will coordinate with the District on a preferred alignment.

3. Some of the project work appears to be in close proximity to the District's 30-inch ductile iron pipe export force main. This force main runs through the project area on Glen Eagles Rd., Elks Club Dr., Tamoshanter Dr., and Meadow Vale Dr. This force main is a critical component of the District's treated wastewater disposal. This force main runs from the District's Wastewater Treatment Plant on Meadow Crest Drive to the Luther Pass Pump Station at the base of Luther Pass. If the pipe was damaged in any way, it is conceivable that the entire contents of the pipes could be spilled. Any project that will cross these force mains must contain a contingency plan to handle a potential breech of the force mains. District records indicate the 24 inch force main is steel pipe, while the 30 inch force main is ductile iron pipe.

Based on the existing utility map, it appears the only work that will cross the 30 inch force main will be the removal and replacement of an existing culvert at Meadow Vale Drive, south of Boca Raton Drive. The County requests the District supply electronic drawings showing the vertical and horizontal location of the force main. The County will work with the District on an appropriate spill contingency plan for any potential construction impacts to the existing force line.

4. Please let the District know at your earliest convenience of any potholing needed of our utilities. For sewer service locations, dipping the manholes in lieu of potholing may be sufficient to determine the location and elevation of sewer piping.

The County appreciates the District providing this information. The County will submit the potholing request with the 65% plan set.

We thank you for your comments regarding the Country Club Heights Erosion Control Project. We will keep you informed of the progress of this Project as it moves forward through the Project Delivery Process.

Sincerely

Daniel Kikkert, PE Senior Civil Engineer

Cc: Amy Dillon, CDA-TD John Kahling, CDA-TD